Skip to main content
Log in

A Tracer Interaction Method for Nonlinear Pharmacokinetics Analysis: Application to Evaluation of Nonlinear Elimination

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A drug tracer is most commonly applied to get information about the pharmacokinetics (PK) of a drug that is not confounded by an endogenously produced drug or an unknown drug input. An equally important use of tracers that has not been fully recognized is their use in the study of nonlinear PK behavior. In the present study a system analysis is applied to examine the interaction between drug molecules characteristic and intrinsic to any nonlinear process which enables the nonlinearity to be identified and modeled using a drug tracer. The proposed Tracer Interaction Methodology (TIM) forms a general developmental framework for novel methods for examining nonlinear phenomena. Such methods are potentially much more sensitive and accurate than previous methods not exploiting the tracer principle. The methodology proposed is demonstrated in a simulation study and with real data in a specific implementation aimed at determining the Michaelis-Menten (MM) parameters of nonlinear drug elimination while accounting for drug distribution effects. The simulation study establishes that the TIM-based, MM parameter evaluation produces substantially more accurate parameter estimates than a nontracer (NT) conventional method. In test simulations the accuracy of the TIM was in many cases an order of magnitude better than the NT method without evidence of bias. The TIM-based, MM parameter estimation methodology proposed is ideally suitable for dynamic, non-steady-state conditions. Thus, it offers greater applicability and avoids the many problems specific to steady state evaluations previously proposed. TIM is demonstrated in an evaluation of the nonlinear elimination behavior of erythropoietin, a process that likely takes place via receptor-based endocytosis. Due to its high sensitivity, accuracy, and intrinsic nonlinearity the TIM may be suitable for in-vivo studies of receptor binding of the many biotechnology produced peptide drugs and endogenous compounds displaying receptor-mediated elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Veng-Pedersen. Linear and nonlinear system approaches in pharmacokinetics: how much do they have to offer? I. General considerations. J. Pharmacokin. Biopharm. 16:413–472 (1988).

    Article  CAS  Google Scholar 

  2. D. J. Cutler. Linear systems analysis in pharmacokinetics. J. Pharmacokin. Biopharm. 6:265–282 (1978).

    Article  CAS  Google Scholar 

  3. C. D. Thron. Linearity and superposition in pharmacokinetics. Pharmacol. Rev. 26:13–21 (1974).

    Google Scholar 

  4. P. Veng-Pedersen. Theorems and implications of a model independent elimination/distribution function decomposition of linear and some nonlinear drug dispositions. I. Derivations and theoretical analysis. J. Pharmacokin. Biopharm. 12:627–648 (1984).

    Article  CAS  Google Scholar 

  5. P. Veng-Pedersen. Drug absorption evaluation in the presence of changes in clearance—An algorithm and computer-program for deconvolution with exact clearance correction. Biopharm. Drug Dispos. 8:185–203 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. P. Veng-Pedersen. Curve fitting and modeling in pharmacokinetics and some practical experiences with NONLIN and a new program FUNFIT. J. Pharmacokin. Biopharm. 5:513–531 (1977).

    Article  Google Scholar 

  7. M. F. Hutchinson and F. R. deHoog. Smoothing noise data with spline functions. Numer. Math. 47:99–106 (1985).

    Article  Google Scholar 

  8. P. Craven and G. Wahba. Smoothing noisy data with spline functions. Numer. Math. 31:377–403 (1979).

    Article  Google Scholar 

  9. J. A. Widness, R. L. Schmidt, N. Modi, P. Veng-Pedersen, and S. T. Sawyer. A sensitive and specific erythropoietin immunoprecipitation assay; Application to pharmacokinetic studies, J. Lab. Clin. Med. 119:285–294 (1992).

    CAS  PubMed  Google Scholar 

  10. S. T. Sawyer. Receptors for erythropoietin: Distribution, structure, and role in receptor-mediated endocytosis in erythroid cells. In J. R. Harris (ed.), Blood Cell Biochemistry, Plenum Press, New York, 1990, pp. 365–402.

    Google Scholar 

  11. J. A. Widness, J. F. Garcia, G. K. Clemons, R. L. Cavalieri, J. B. Susa, K. A. Teramo, et al. Temporal response of immunoreactive erythropoietin to acute hypoxemia in the sheep fetus. Pediat. Res. 20:15–19, (1986).

    Article  CAS  PubMed  Google Scholar 

  12. J. C. Egrie, P. M. Cotes, J. Lane, R. E. G. Das, and R. C. Tam. Development of radioimmunoassays for human erythropoietin using recombinant erythropoietin as tracer and immunogen. J. Immunol. Meth. 99:235–241 (1987).

    Article  CAS  Google Scholar 

  13. K. K. Flaharty, J. Caro, A. Erslev, J. J. Whatlen, E. M. Morris, T. D. Bjornsson, et al. Pharmacokinetics and erythropoietic response to human recombinant erythropoietin in healthy men. Clin. Pharmacol. Ther. 47:557–564 (1990).

    Article  PubMed  Google Scholar 

  14. J. Kochling. Pharmacokinetics and Pharmacodynamics of Recombinant Human Erythropoietin in Haemodialysis Patients [Inaugural-Dissertation], The Free University of Berlin, Berlin, Germany, 1993, p. 107.

  15. P. Veng-Pedersen, J. A. Widness, L. M. Pereira, C. Peters, R. L. Schmidt, and L. S. Lowe. Pharmacokinetic disposition decomposition analysis of erythropoietin in newborn lambs and human neonates: Evidence for receptor mediated elimination. Blood (submitted for publication).

  16. J. A. Widness, P. Veng-Pedersen, C. Peters, L. M. Pereira, R. L. Schmidt, and L. S. Lowe. Erythropoietin pharmacokinetics in premature infants: Developmental, nonlinearity, and treatment effects. J. Appl. Physiol. 80:140–148 (1996).

    CAS  PubMed  Google Scholar 

  17. T. M. Ludden. Nonlinear pharmacokinetics: Clinical Implications. Clin. Pharmacokin. 20:429–446 (1991).

    Article  CAS  Google Scholar 

  18. F. Lundquist and H. Wolthers. The kinetics of alcohol elimination in man. Acta Pharmacol. Toxicol. 14:265–289 (1958).

    Article  CAS  Google Scholar 

  19. J. G. Wagner. Properties of the Michaelis-Menten equation and its integrated form which are useful in pharmacokinetics. J. Pharmacokin. Biopharm. 1:121, 337–338 (1973).

    Article  Google Scholar 

  20. N. Gerber and N. Wagner. Explanation of dose dependent decline of diphenylhydantoin plasma levels by fitting to the integrated form of the Michaelis-Menten equation. Res. Commun. Chem. Pathol. Pharmacol. 3:455–466 (1972).

    CAS  PubMed  Google Scholar 

  21. L. K. Garrettson and W. J. Jusko. Diphenylhydantoin elimination kinetics in overdosed children. Clin. Pharmacol. Ther. 17:481–491 (1975).

    CAS  PubMed  Google Scholar 

  22. P. K. Wilkinson, A. J. Sedman, E. Sakman, R. H. Earhan, D. J. Weidler, et al. Blood ethanol concentrations during and following constant-rate intravenous infusion of alcohol. Clin. Pharmacol. Ther. 19:213–223 (1976).

    CAS  PubMed  Google Scholar 

  23. Y.-J. Lin, J. Weidler, D. C. Garg, and J. G. Wagner. Novel method of estimating volume of distribution of a drug obeying Michaelis-Menten elimination kinetics. J. Pharmacokin. Biopharm. 6:197–207 (1978).

    Article  CAS  Google Scholar 

  24. A. Selen, G. L. Amidon, and P. G. Welling. Pharmacokinetics of probenecid following oral doses to human volunteers. J. Pharm. Sci. 71:1238–1242 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. E. R. Garrett and W. Roth. Nonlinear pharmacokinetics of the new positive inotropic agent sulmazole in the dog. J. Pharm. Sci. 72:105–116 (1983).

    Article  CAS  PubMed  Google Scholar 

  26. A. J. Sedman and J. G. Wagner. Importance of the use of the appropriate pharmacokinetic model to analyze in vivo enzyme constants. J. Pharmacokin. Biopharm. 2:161–173 (1974).

    Article  CAS  Google Scholar 

  27. D. D. M. Tong and C. M. Metzler. Mathematical properties of compartment models with Michaelis-Menten type elimination. Math. Biosci. 48:293–306 (1980).

    Article  Google Scholar 

  28. C. M. Metzler and D. D. M. Tong. Computational problems of compartment models with Michaelis-Menten type elimination. J. Pharm. Sci. 70:733–737 (1981).

    Article  CAS  PubMed  Google Scholar 

  29. A. Holmberg. On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities. Math. Biosci. 62:23–43 (1982).

    Article  Google Scholar 

  30. K. R. Godfrey and W. R. Fitch. The deterministic identifiability of nonlinear pharmacokinetic models. J. Pharmacokin. Biopharm. 12:177–191 (1984).

    Article  CAS  Google Scholar 

  31. J. G. Wagner. A modern view of pharmacokinetics. J. Pharmacokin. Biopharm. 1:363–401 (1973).

    Article  CAS  Google Scholar 

  32. J. A. Widness, P. Veng-Pedersen, R. L. Schmidt, L. S. Lowe, J. A. Kistard, and C. Peters. In vivo 125I-erythropoietin pharmacokinetics are unchanged following anesthesia, nephrectomy and hepatectomy in sheep. J. Pharmacol. Exp. Ther. 279:1205–1210 (1996).

    CAS  PubMed  Google Scholar 

  33. S. Gammeltoft. Receptor-Mediated Endocytosis and Degradation of Polypeptide Hormones, Growth Factors, and Neuropeptides, CRC Press, Boston, 1991, chap. 5.

    Google Scholar 

  34. F. Stohlman. Observations on the physiology of erythropoietin and its role in the regulation of red cell production. Ann. N.Y. Acad. Sci. 77:710–724 (1959).

    Article  PubMed  Google Scholar 

  35. W. Jelkmann and Wiedamann. Relationships to blood hemoglobin concentration and erythrocytic activity of the bone marrow. Klin. Wochenschr. 68:403–407 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. R. J. Grace, R. G. Kendall, A. E. Hartley, D. L. Barnard, and D. R. Norfolk. Changes in serum erythropoietin levels during allogeneic bone marrow transplantation. Eur. J. Haem. 47:81–85 (1991).

    Article  CAS  Google Scholar 

  37. S. V. Davies, C. D. Fegan, R. Kendall, and I. Cavill. Serum erythropoietin during autologous bone marrow transplantation: relationship to measures of erythroid activity. Clin. Lab. Haem. 17:139–144 (1995).

    CAS  Google Scholar 

  38. V. Pavlovic-Kentera, P. Milenkovic, R. Ruvidic, V. Jovanovic, and L. Biljanovic-Paunovic. Erythropoietin in aplastic anemia. Blut 39:345–350 (1979).

    Article  CAS  PubMed  Google Scholar 

  39. R. Alexanian. Erythropoietin excretion in bone marrow failure and hemolytic anemia. J. Lab. Clin. Med. 82:438–445 (1973).

    CAS  PubMed  Google Scholar 

  40. G. deKlerk, P. C. J. Rosengarten, R. J. W. M. Vet, and R. Goudsmit. Serum erythropoietin (ESF) titres in anemia. Blood 58:1164–1170 (1981).

    CAS  Google Scholar 

  41. Y. Beguin, G. K. Clemons, P. Pootrakul, and G. Fillet. Quantitative assessment of erythropoiesis and functional classification of anemia based on measurements of serum transferrin receptor and erythroipetin. Blood 81:1067–1076 (1993).

    CAS  PubMed  Google Scholar 

  42. S. H. Embury, J. F. Garcia, N. Mohandas, R. Pannathru-Das, and M. R. Clark. Effects of oxygen inhalation on endogenous erythropoietin kinetics, erythropoiesis, and properties of blood cells in sickle-cell anemia. New Engl. J. Med. 311:291–295 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. K.-U. Eckardt, J. Dittmer, R. Neumann, C. Bauer, and A. Kurtz. Decline of erythropoietin formation at continuous hypoxia is not due to feedback inhibition. Am. J. Physiol. 258:F1432–F1437 (1990).

    CAS  PubMed  Google Scholar 

  44. T. R. Browne, D. J. Greenblatt, J. S. Harmatz, J. E. Evans, G. K. Szabo, B. A. Evans, and G. E. Schumacher. Studies with stable isotopes III: Pharmacokinetics of tracer doses of drug. J. Clin. Pharmacol. 25:59–63 (1985).

    Article  CAS  PubMed  Google Scholar 

  45. G. W. Houghton and A. Richens. Rate of elimination of tracer doses of phenytoin at different steady-state serum phenytoin concentrations in epileptic patients. Br. J. Clin. Pharmacol. 1:155–161 (1974).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. E. Snoeck, P. Jacqmin, A. Van Peer, M. Danhof, K. Ver Donck, H. Van Belle, R. Woestenborghs, R. Crabbe, R. van Gool, A. Dupont, and J. Heykants. The implications of nonlinear red blood cell partitioning for the pharmacokinetics and pharmacodynamics of the nucleoside transport inhibitor draflazine. Br. J. Clin. Pharmacol. 42:605–613 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. P. J. Fielder, A. L. Gurney, E. Stefanich, M. Marian, M. W. Moore, K. Carver-Moore, and F. J. DeSauvage. Regulation of thrombopoietin levels by c-mpl mediated binding to platelets. Blood 87:2154–2161 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veng-Pedersen, P., Widness, J.A., Wang, J. et al. A Tracer Interaction Method for Nonlinear Pharmacokinetics Analysis: Application to Evaluation of Nonlinear Elimination. J Pharmacokinet Pharmacodyn 25, 569–593 (1997). https://doi.org/10.1023/A:1025765330455

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025765330455

Navigation