Skip to main content
Log in

RNA Interference: Applicability in Tick Research

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

The rapid development of new genetic tools has boosted the gene discovery machinery. RNA interference (RNAi), a gene silencing process, has been recently used in several eukaryotic organisms to elucidate the function(s) of unknown genes and biochemical pathways. We used the dsRNA technique in Amlyomma americanum female ticks to test the applicability of the RNAi approach in ticks. Incubation of tick salivary glands (TSGs) in vitro and in vivo injection into whole female ticks with histamine binding protein (HBP) dsRNA led to a reduction in the HBP transcripts in the dsRNA treated groups. The dsRNA-injected ticks had a profound difference in their feeding pattern compared to control ticks that might reflect an increase in local histamine concentrations at the feeding sites. To our knowledge, this is the first RNAi study in ticks. In conclusion, RNAi can be applied in ticks and might be used to test the function of key proteins crucial for avoiding host defense at the tick-host interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aljamali, M.N. et al. 2002. Identity and synthesis of prostaglandins in the lone star tick, Amblyomma americanum (L.), as assessed by radio-immunoassay and gas chromatography/ mass spectrometry. Insect Biochem. Mol. Biol. 32: 331-341.

    Article  PubMed  CAS  Google Scholar 

  • Bergman, D.K. et al. 2000. Isolation and molecular cloning of a secreted immuno-suppressant protein from Dermacentor andersoni salivary glands. J. Parasitol. 86: 516-525.

    PubMed  CAS  Google Scholar 

  • Bernstein, E. et al. 2001. Role for a bidentateribonuclease in the initiation step of RNA interference. Nature 409: 363-366.

    Article  PubMed  CAS  Google Scholar 

  • Bior, A.D. et al. 2002. Comparison of differentially expressed genes in the salivary glands of male ticks, Amblyomma americanum and Dermacentor andersoni. Insect Biochem. Mol. Biol 32: 645-655.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, A.S. et al. 1996. Tick salivary prostaglandins: presence, origin and significance. Parasitol. Today 12: 388-395.

    Article  PubMed  CAS  Google Scholar 

  • Elbashir, S.M. et al. 2001. Functional anatomy of siRNAs from mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20: 6877-6888.

    Article  PubMed  CAS  Google Scholar 

  • Fire, A. et al. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811.

    Article  PubMed  CAS  Google Scholar 

  • Francischetti, I.M.B. et al. 2002. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary glands of the tick, Ixodes scapularis: Identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood 99: 3602-3612.

    Article  PubMed  CAS  Google Scholar 

  • Grishok, A. et al. 2001. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106: 23-34.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, J.A. 2000. Genomics: from novel genes to new therapeutics in parasitology. Int. J. Parasitol. 30: 247-252.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge, W.E. 1997. Designer drugs: pipe-dreams or realities. Parasitology 114: S145-S151.

    Article  PubMed  Google Scholar 

  • Hammond, S.M. et al. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: 293-296.

    Article  PubMed  CAS  Google Scholar 

  • Hannon, G.J. 2002. RNA interference. Nature 418: 244-251.

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara, P.E. and Coulson, A. 2000. RNAi-prospects for a general technique for determining gene function. Parasitol. Today 16: 347-349.

    Article  PubMed  CAS  Google Scholar 

  • Nykänen, A. et al. 2001. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107: 309-321.

    Article  PubMed  Google Scholar 

  • Paesen, G.C. et al. 1999. Tick histamine-binding proteins: isolation, cloning, and threedimensional structure. Mol. Cell 3: 661-671.

    Article  PubMed  CAS  Google Scholar 

  • Paesen, G.C. et al. 2000. Tick histamine-binding proteins: lipocalins with second binding cavity. Biochim. Biophys. Acta 1482: 92-101.

    PubMed  CAS  Google Scholar 

  • Patrick, C.D. and Hair, J.A. 1975. Laboratory rearing procedures and equipment for multihost ticks. J. Med. Entomol. 12: 389-390.

    PubMed  CAS  Google Scholar 

  • Plasterk, E.H.A. 2002. RNA silencing: the genome's immune system. Science 296: 1263-1265.

    Article  PubMed  CAS  Google Scholar 

  • Sangamnatdej, S. et al. 2002. A high affinity serotonin-and histamine-binding lipocalin from tick saliva. Insect. Mol. Biol. 11: 79-86.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, M.A. 2001. Recent development in ectoparasiticides. Vet. J. 161: 253-268.

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela, J.G. et al. 2002. Exploring the Sialome of the tick vector of Lyme disease, Ixodes scapularis. J. Exp. Biol. 205: 2843-2864.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aljamali, M.N., Sauer, J.R. & Essenberg, R.C. RNA Interference: Applicability in Tick Research. Exp Appl Acarol 28, 89–96 (2002). https://doi.org/10.1023/A:1025346131903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025346131903

Navigation