Skip to main content
Log in

Study of the interaction and activation of lipase from Pseudomonas fluorescens in surfactant monolayers and precipitates

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The activation of lipase from Pseudomonas fluorescens (PFL) upon its immobilization in surfactant coprecipitates (hexadecane-1,2-diol (HDD), cetyl alcohol (CetOH), N-cetylacetamide (CetAA), and cetylamine (CetNH2)) organized in monolayers at the interface were studied by the Langmuir—Blodgett monolayer technique. Incorporation of the enzyme into surfactant monolayers at the surface pressure π = 10 mN m–1 results in an apparent increase in the area per molecule. In the series of noncharged surfactants CetOH—HDD—CetAA, this effect increases in proportion to the amount of the enzyme incorporated in the monolayer. The catalytic activity of the lipase—surfactant coprecipitates in an organic solvent as regards esterification increases in the same sequence, indicating similarity of the interaction of lipase with surfactant monolayers and coprecipitates. For π = 10 mN m–1, the CetNH2 monolayer with liquid-expanded state incorporates the largest amount of the enzyme (PFL : CetNH2 = 1 : 290); the CetOH monolayer, which exists in the condensed state under the same conditions, incorporates the smallest amount (PFL : CetOH = 1 : 1700). The hydrolytic activity of PFL in mixed monolayers with surfactants increases 1.5—11-fold; the esterification activity in surfactant coprecipitates, 1.6—9-fold. The lipase activation effects are explained by facilitated transport of substrates into mixed monolayers and surfactant—enzyme precipitates in aqueous and organic media, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ransac, C. Rivière, and R. Verger, Methods in Enzymology, 1991, 197, 49.

    Google Scholar 

  2. K. S. Birdi, Lipid and Biopolymer Monolayers at Liquid Interfaces, Plenum Press, New York-London, 1989, 305.

    Google Scholar 

  3. S. Yu. Zaitsev, B. Akha, T. A. Volchenkova, S. V. Belov, M. P. Shnaider, and A. E. Ivanov, Bioorgan. Khim., 2000, 26, 224 [Russ. J. Bioorg. Chem., 2000, 26, 201 (Engl. Transl.)].

    Google Scholar 

  4. F. Malcata, H. Reyes, H. Garcia, C. Hill, and C. Amundson, Jr., Enzyme Microb. Technol., 1992, 14, 426.

    Google Scholar 

  5. Lipase, Eds. B. Borstrom and H. L. Brockman, Elsevier, Amsterdam-New York-Oxford, 1984, p. 503.

  6. A. E. Ivanov and M. P. Schneider, J. Mol. Catalysis, B: Enzymatic, 1997, 3, 303.

    Google Scholar 

  7. G. Fernandez-Lorente, M. Terreni, C. Mateo, A. Bastida, R. Fernandez-Lafuente, P. Dalmases, J. Huguet, and J. M. Guisan, Enzyme and Microbial Technology, 2001, 28, 389.

    Google Scholar 

  8. J. A. Bosley and J. C. Clayton, Biotechnol. Bioeng., 1994, 43, 934.

    Google Scholar 

  9. I. V. Gorokhova, A. E. Ivanov, and V. P. Zubov, Izv. Akad. Nauk, Ser. Khim., 2001, 146 [Russ. Chem. Bull., Int. Ed., 2001, 50, 152].

    Google Scholar 

  10. I. V. Gorokhova, A. E. Ivanov, and V. P. Zubov, Bioorgan. Khimiya, 2002, 28, 44 [Russ. J. Bioorg. Chem., 2002, 28, 44 (Engl. Transl.)].

    Google Scholar 

  11. P. D. I. Fletcher and B. H. Robinson, J. Chem. Soc., Faraday Trans. 1, 1985, 2667.

  12. A. W. Adamson, Physical Chemistry of Surfaces, J. Wiley and Sons, New York-London-Sydney-Toronto, 1976.

    Google Scholar 

  13. W. M. Heckl, M. Thompson, and H. Moewald, Langmuir, 1989, 5, 390.

    Google Scholar 

  14. W. M. Heckl, B. N. Zaba, and H. Moehwald, Biochim. Biophys. Acta, 1987, 903, 166.

    Google Scholar 

  15. K. A. Shiffer, J. Goerke, N. Duezguenes, J. Fedor, and S. B. Shohet, Biochim. Biophys. Acta, 1988, 937, 269.

    Google Scholar 

  16. S. Yu. Zaitsev, Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 1993, 75, 211.

    Google Scholar 

  17. C. W. Hoerr, M. R. McCorkle, and A. W. Ralston, J. Am. Chem. Soc., 1943, 65, 328.

    Google Scholar 

  18. M. Sugiura and T. Oikawa, Biochim. Biophys. Acta, 1977, 24, 262.

    Google Scholar 

  19. H. van Tilbeurgh, M.-P. Egloff, C. Martinez, N. Rugani, R. Verger, and C. Cambillau, Nature, 1993, 362, 814.

    Google Scholar 

  20. R. J. Barros, E. Wehtje, and P. Adlercreutz, Biotechnology and Bioengineering, 1998, 59, 364.

    Google Scholar 

  21. Y. Okahata, T. Tsuruta, K. Ijiro, and K. Ariga, Thin Solid Films, 1989, 180, 65.

    Google Scholar 

  22. L. M. Blinov, Usp. Fiz. Nauk, 1988, 155, 443 [Russ. Phys. Rev., 1988, 155, No. 3 (Engl. Transl.)].

    Google Scholar 

  23. A. O. Triantafyllou, E. Wehtje, P. Adlercreutz, and B. Mattiasson, Biotechnology and Bioengineering, 1995, 45, 406.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorokhova, I.V., Ivanov, A.E., Zaitsev, S.Y. et al. Study of the interaction and activation of lipase from Pseudomonas fluorescens in surfactant monolayers and precipitates. Russian Chemical Bulletin 52, 1013–1021 (2003). https://doi.org/10.1023/A:1024437401394

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024437401394

Navigation