Skip to main content
Log in

Sound Propagation in 3He and 4He Above the Liquid-Vapor Critical Point

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A scaled plot is presented of published sound attenuation and dispersion data of 3 He and 4 He along the critical isochore above Tc as a function of the reduced frequency ω * . Here ω * ≡ω/Γ with ω the frequency and Γ the order parameter relaxation rate, where the latter is determined from experimental transport and thermodynamic data. For a given isotope, the scaled data obtained at different frequencies lie on a single curve. These curves are different, however, for 3 He and 4 He. The resulting scaled plot is compared with recent predictions by Onuki, and by Folk and Moser. The crossover-term contribution in Γ from the background thermal conductivity data is compared with the form derived by Bhattacharjee and Ferrell. In the Appendix, the calculation of Γ for both 3 He and 4 He from experiments is described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. Folk and G. Moser, Phys. Rev. Lett. 75, 2706 (1995).

    Google Scholar 

  2. J. Luettmer-Strathmann, J. V. Sengers, and G. A. Olchowy, J. Chem. Phys. 103, 7482 (1995).

    Google Scholar 

  3. A. Onuki, Phys. Rev. E 55, 403 (1997).

    Google Scholar 

  4. R. Folk and G. Moser, I, Phys. Rev. E (to appear).

  5. R. Folk and G. Moser, II, Phys. Rev. E (to appear).

  6. J. K. Bhattacharjee and R. A. Ferrell, Physica A (to appear).

  7. R. Folk and G. Moser, J. Low Temp. Phys. 99, 11 (1995).

    Google Scholar 

  8. J. Luettmer-Strathmann and J. V. Sengers, J. Chem. Phys. 104, 3026 (1996).

    Google Scholar 

  9. D. B. Roe, B. A. Wallace, and H. Meyer, J. Low Temp. Phys. 16, 51 (1974).

    Google Scholar 

  10. D. B. Roe and H. Meyer, J. Low Temp. Phys. 30, 91 (1978).

    Google Scholar 

  11. T. Doiron, D. Gestrich, and H. Meyer, Phys. Rev. B 22, 3202 (1980). In this paper, the authors accidentally forgot to mention that in Fig. 2 the U(1 MHz) data, represented by open squares for 4He and open diamonds for 3He, were those from Refs. 9 and 10, obtained in the same laboratory.

    Google Scholar 

  12. F. Zhong, A. B. Kogan, and H. Meyer, J. Low Temp. Phys. 108, 161 (1997).

    Google Scholar 

  13. K. Kawazaki, Phys. Rev. A 1, 1750 (1970).

    Google Scholar 

  14. C. Pittman, L. Cohen, and H. Meyer, J. Low Temp. Phys. 46, 115 (1982).

    Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Fluid Mechanics Vol. 6 of Course of Theoretical Physics, Pergamon Press, Oxford (1959), p. 304.

    Google Scholar 

  16. E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics Vol. 10 of Course of Theoretical Physics, Pergamon Press, Oxford (1981).

    Google Scholar 

  17. J. Bhattacharjee and R. A. Ferrell, Phys. Lett. A 88, 77 (1982).

    Google Scholar 

  18. J. V. Sengers, Int. J. Thermophys. 6, 203 (1985).

    Google Scholar 

  19. C. C. Agosta, S. Wang, L. H. Cohen, and H. Meyer, J. Low Temp. Phys. 67, 237 (1987).

    Google Scholar 

  20. Y. Miura, H. Meyer, and A. Ikushima, J. Low Temp. Phys. 55, 247 (1984).

    Google Scholar 

  21. R. A. Ferrell and J. K. Bhattacharjee, Phys. Rev. A 31, 1788 (1985).

    Google Scholar 

  22. A. Onuki, J. Phys. Soc. Jpn. 66, 511 (1997).

    Google Scholar 

  23. G. Moser and R. Folk, Proc. 21rst Intern. Conf. Low Temp. Physics LT21, Czech. J. Phys. 46,S1, 167 (1996).

    Google Scholar 

  24. M. Barmatz, Phys. Rev. Lett. 24, 651 (1970).

    Google Scholar 

  25. F. Zhong and H. Meyer, to be published.

  26. G. A. Olchowy and J. V. Sengers, Phys. Rev. Lett. 61, 15 (1988).

    Google Scholar 

  27. J. V. Sengers, in Supercritical Fluids: Fundamentals for Applications, E. Kiran and J. M. H. Levelt Sengers (eds.), Kluwer, Dordrecht (1994), p. 231.

    Google Scholar 

  28. E. P. Sakonidou, H. R. van den Berg, C. ten Seldam, and J. V. Sengers, J. Chem. Phys. 105, 10535 (1996).

    Google Scholar 

  29. A. Acton and K. Kellner, Physica B 90, 192 (1977).

    Google Scholar 

  30. A. Acton, PhD. Thesis, University of Southampton (1976) (Unpublished), and private communication.

  31. F. Zhong and H. Meyer, Phys. Rev. E 51, 3223 (1995).

    Google Scholar 

  32. C. Pittman, T. Doiron, and H. Meyer, Phys. Rev. B 20, 3678 (1979).

    Google Scholar 

  33. M. R. Moldover, Phys. Rev. 182, 342 (1969).

    Google Scholar 

  34. H. A. Kierstead, Phys. Rev. A 7, 242 (1973).

    Google Scholar 

  35. H. A. Kierstead, Phys. Rev. A 3, 329 (1971).

    Google Scholar 

  36. L. Mistura, International School of Physics Enrico Fermi, Course LI, Academic Press, New York (1971), p. 563.

    Google Scholar 

  37. K. Kawasaki, Phys. Rev. A 1, 1750 (1970).

    Google Scholar 

  38. H. L. Swinney and D. L. Henry, Phys. Rev. A 8, 2586 (1973).

    Google Scholar 

  39. J. V. Sengers and J. M. J. van Leeuwen, Physica A 116, 345 (1982).

    Google Scholar 

  40. R. G. Brown and H. Meyer, Phys. Rev. A 6, 364 (1972).

    Google Scholar 

  41. R. P. Behringer, T. Doiron, and H. Meyer, J. Low Temp. Phys. 24, 315 (1976).

    Google Scholar 

  42. B. Wallace and H. Meyer, Phys. Rev. A 2, 1563 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kogan, A.B., Meyer, H. Sound Propagation in 3He and 4He Above the Liquid-Vapor Critical Point. Journal of Low Temperature Physics 110, 899–918 (1998). https://doi.org/10.1023/A:1022637129020

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022637129020

Keywords

Navigation