Skip to main content
Log in

The Energy-Conserving and Energy-Dissipating Processes in Mitochondria Isolated from Wild Type and Nonripening Tomato Fruits During Development on the Plant

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Bioenergetics of tomato (Lycopersicon esculentum) development on the plant was followed from the early growing stage to senescence in wild type (climacteric) and nonripening mutant (nor, nonclimacteric) fruits. Fruit development was expressed in terms of evolution of chlorophyll a content allowing the assessment of a continuous time-course in both cultivars. Measured parameters: the cytochrome pathway-dependent respiration, i.e., the ATP synthesis-sustained respiration (energy-conserving), the uncoupling protein (UCP) activity-sustained respiration (energy-dissipating), the alternative oxidase(AOX)-mediated respiration (energy-dissipating), as well as the protein expression of UCP and AOX, and free fatty acid content exhibited different evolution patterns in the wild type and nor mutant that can be attributed to their climacteric/nonclimacteric properties, respectively. In the wild type, the climacteric respiratory burst observed in vitro depended totally on an increse in the cytochrome pathway activity sustained by ATP synthesis, while the second respiratory rise during the ripening stage was linked to a strong increase in AOX activity accompanied by an overexpression of AOX protein. In wild type mitochondria, the 10-μM linoleic acid-stimulated UCP-activity-dependent respiration remained constant during the whole fruit development except in senescence where general respiratory decay was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Almeida, A. M., Jarmuszkiewicz, W., Khomsi, H., Arruda, P., Vercesi, A. E., and Sluse, F. E. (1999). Plant Physiol. 119, 1323–1329.

    Google Scholar 

  • Andreyev, A. Y., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. L., and Vygodina, T. V. (1989), Eur. J. Biochem. 182, 585–592.

    Google Scholar 

  • Beadle, N. C. W. (1937). Aust. J. Exp. Biol. Med. Sci. 15, 173–189.

    Google Scholar 

  • Bergevin, M., L'Heureux, G. P., Thompson, J. E., and Willemot, C. (1993). Physiol. Plant. 87, 522–527.

    Google Scholar 

  • Brady. C. J. (1987). Annu. Rev. Plant Physiol. 38, 155–178.

    Google Scholar 

  • Considine, M., Daley, D., and Whelan, J. (2001). Plant Physiol. 126, 1619–1629.

    Google Scholar 

  • Deby-Dupont, G., Ducarne, H., de Lanndsheere, C., Ancion, J. C., Noel, F. X., Dadoux, L., and Deby, C. (1983). Biomed. Pharmacother. 37, 386–391.

    Google Scholar 

  • Ferguson, I., Volz, R., and Woolf, A. (1999). Postharv. Biol. Tech. 15, 255–262.

    Google Scholar 

  • Folch, J., Lees, M., and Sloane-Stanley, G. H. (1957). J. Biol. Chem. 226, 497–509.

    Google Scholar 

  • Gornall, A. G., Bardawill, C. J., and Dawid, M. M. (1949). J. Biol. Chem. 177, 751–757.

    Google Scholar 

  • Jarmuszkiewicz, W., Almeida, A. M., Sluse-Goffart, C. M., Sluse, F. E., and Vercesi, A. E. (1998). J. Biol. Chem. 273, 34882–34886.

    Google Scholar 

  • Jarmuszkiewicz W., Almeida, A. M., Sluse-Goffart, C. M., Sluse, F. E., and Vercesi, A. E. (2000). J. Biol. Chem. 275, 13315–13320.

    Google Scholar 

  • Jezek, P., Costa, A. D. T., and Vercesi, A. E. (1996). J. Biol. Chem. 271, 32743–32748.

    Google Scholar 

  • Jezek, P., Costa, A. D. T., and Vercesi, A. E. (1997). J. Biol. Chem. 272, 24272–24278.

    Google Scholar 

  • Klingenberg, M., and Echtay, K. S. (2001). Biochim. Biophys. Acta 1504, 128–143.

    Google Scholar 

  • Klingenberg, M., and Huang, S. G. (1999). Biochim. Biophys. Acta 1415, 271–296.

    Google Scholar 

  • Kumar, S., and Sinha, S. H. (1992). J. Exp. Bot. 43, 1639–1642.

    Google Scholar 

  • Kumar, S., Patil, B. C., and Sinha, S. K. (1990). Biochem. Biophys. Res. Commun. 168, 818–822.

    Google Scholar 

  • Lelievre, J.-M., Latche, A., Jones, B., Bouzayen, M., and Pech, J.-C. (1997). Physiol. Plant. 101, 727–739.

    Google Scholar 

  • Lyons, J., and Pratt, H. K. (1963). Am. Soc. Hort. Sci. 84, 491–500.

    Google Scholar 

  • Meeuse, B. J. D. (1975). Annu. Rev. Plant Physiol. 26, 117–126.

    Google Scholar 

  • Minagawa, N., Sakajo, S., and Yoshimoto, A. (1992). Biosci. Biotech. Biochem. 56, 1342–1343.

    Google Scholar 

  • Moller, I. M., and Palmer, J. M. (1982). Physiol. Plant. 54, 267–274.

    Google Scholar 

  • Pirrung, M. C., and Brauman, J. I. (1987). Plant. Physiol. Biochem. 25, 55–61.

    Google Scholar 

  • Schlenk, H. L., and Gellerman, J. L. (1960), Anal. Chem. 32, 1412–1414.

    Google Scholar 

  • Sluse, F. E., Almeida, A. M., Jarmuszkiewicz, W., and Vercesi, A. E. (1998). FEBS Lett. 433, 237–240.

    Google Scholar 

  • Sluse, F. E., and Jarmuszkiewicz, W. (1998). Braz. J. Med. Biol. Res. 32, 733–747.

    Google Scholar 

  • Sluse, F. E., and Jarmuszkiewicz, W. (2000). Braz. J. Med. Biol. Res. 33, 259–268.

    Google Scholar 

  • Sluse, F. E., and Jarmuszkiewicz, W. (2002). FEBS Lett. 510, 117–120.

    Google Scholar 

  • Solomos, T (1977). Annu. Rev. Plant Physiol. 28, 279–297.

    Google Scholar 

  • Szarkowska, L., and Klingenberg, M. (1963). Biochem. Z. 338, 674–697.

    Google Scholar 

  • Tigchelaar, E. C., McGlasson, W. B., and Buescher, R.W. (1978). Hort. Sci. 13, 508–513.

    Google Scholar 

  • Tucker, M. L., and Laties, G. G. (1985). Plant Cell. Environ. 8, 117–127.

    Google Scholar 

  • Umbach, A. L., and Siedow, J. N. (1993). Plant Physiol. 103, 845–854.

    Google Scholar 

  • Vanlerbergue, G. C., and McIntosh, L. (1997). Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 703–734.

    Google Scholar 

  • Vercesi, A. E., Martins, I. S., Silva, M. A. P., Leite, H. M. F., Cucovia, I. M., and Chaimovich, H. (1995). Nature 375, 24.

    Google Scholar 

  • Wagner, A. M., and Moore, A. L. (1997). Biosci. Rep. 17, 319–333.

    Google Scholar 

  • Wieckowski, M., and Wojtczak, L. (1997). Biochem. Biophys. Res. Commun. 232, 414–417.

    Google Scholar 

  • Woolf, A. B., Wexler, A., Prusky, D. N., Kobiler, E., and Lurie, S. (2000). J. Am. Soc. Hort. Sci. 125, 370–376.

    Google Scholar 

  • Zackova, M., Kramer, R., and Jezek, P. (2000). Int. J. Biochem. Cell Biol. 32, 499–508.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis E. Sluse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, A.M., Navet, R., Jarmuszkiewicz, W. et al. The Energy-Conserving and Energy-Dissipating Processes in Mitochondria Isolated from Wild Type and Nonripening Tomato Fruits During Development on the Plant. J Bioenerg Biomembr 34, 487–498 (2002). https://doi.org/10.1023/A:1022574327117

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022574327117

Navigation