Skip to main content
Log in

NADH Is Specifically Channeled Through the Mitochondrial Porin Channel in Saccharomyces cerevisiae

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In many kinds of permeabilized cells, the restriction of metabolite diffusion by a mitochondrial porin “closed state” has been shown to control the respiration rate. However, since in isolated mitochondria the porin appears to be always “open,” the physiological relevance of a putative regulation via this channel status is now a subject of discussion. In Saccharomyces cerevisiae, in which some of the NADH dehydrogenase active sites are facing the intermembrane space, this regulatory mechanism might play an important role for the regulation of the cytosolic redox status. Using permeabilized spheroplasts from wild-type and porin-deficient mutant, we show that the NADH produced in the cytosol is channeled to the mitochondrial NADH dehydrogenases through a metabolic network involving the porin channel. Thus, the control exerted by the porin (i.e., “open” or “closed” state) seems to be determined through its participation or not in organized metabolic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anderlund, M., Nissen, T. L., Nielsen, J., Vlladsen, J., Rydström, J., Haln-Hägerdal, B., and Kielland-Brandt, M. C. (1999). Appl. Environ. Microbiol. 65, 2333–2340.

    Google Scholar 

  • Avéret, N., Fitton, V., Bunoust, O., Rigoulet, M., and Guérin, B. (1998). Mol. Cell. Biochem. 184, 67–79.

    Google Scholar 

  • Balaban, R. S. (1990). Am. J. Ph´ysiol. 258, C377–C389. 506 Av´eret, Aguilaniu, Bunoust, Gustafsson, and Rigoulet

    Google Scholar 

  • Beauvoit, B., Rigoulet, M., and Guérin, B. (1989). FEBS Lett. 244, 255–258.

    Google Scholar 

  • BeltrandelRio, H., and Wilson, J. E. (1991). Arch. Biochem. Biophys. 286, 183–194

    Google Scholar 

  • Brown, G. C. (1992). Biochem. J. 284, 1–13.

    Google Scholar 

  • Cornish-Bowden, A. (1976). Principles of Enzyme Kinetics, Butler and Tanner, London.

    Google Scholar 

  • Dihanich, M., Suda, K., and Schatz, G. (1987). EMBO J. 6, 723–728.

    Google Scholar 

  • Doussiére, J., Ligeti, E., Brandolin, G., and Vignais, P. V. (1984). Biochim. Biophys. Acta 766, 492–500.

    Google Scholar 

  • Fitton, V., Rigoulet, M., Ouhabi, R., and Guérin, B. (1994). Biochemistry 33, 9692–9698.

    Google Scholar 

  • Fontaine, E., Keriel, C., Lantuejoul, S., Rigoulet, M., Leverve, X. M., and Saks, V. A. (1995). Biochem. Biophys. Res. Commun. 213, 138–146.

    Google Scholar 

  • Gellerich, F. N., Bohnensack, R., and Kunz, W. (1983). Biochim. Biophys. Acta 722, 381–391.

    Google Scholar 

  • Grandier-Vazeille, X., Bathany, K., Chaignepain, S., Camougrand, N., Manon, S., and Schmitter, J. M. (2001). Biochemistry 40, 9758–9769.

    Google Scholar 

  • Groen, A. K., Wanders, R. J. A., Westerhoff, H. V., Van der Meer, R., and Tager, J. M. (1982). J. Biol. Chem. 257, 2754–2757.

    Google Scholar 

  • Guérin, B., Labbe, P., and Somlo, M. (1979). Meth. Enzymol. 55, 149–159.

    Google Scholar 

  • Guo, X. J., and Lauquin, G. J. M. (1996). EBEC Rep. 4, 292.

    Google Scholar 

  • Inui, M., and Ishibashi, S. (1979). J. Biochem. (Tokyo) 85, 1151–1156

    Google Scholar 

  • Klingenberg, M. (1985). In Methods of Enzymatic Analysis, Vol.VII, (Bergmeyer, H. U., Bergmeyer, J., and Grazl, H., eds.), VCH, Weinheim, pp. 261–267.

    Google Scholar 

  • Lee, A. C., Xu, X., Blachly-Dyson, E., Forte, M., and Colombini, M. (1998). J. Membrane Biol. 161, 173–181.

    Google Scholar 

  • Lee, A. C., Zizi, M., and Colombini, M. (1994). J. Biol. Chem. 269, 30974–30980

    Google Scholar 

  • Mazat, J. P., Jean-Bart, E., Rigoulet, M., and Guérin, B. (1986). Biochim. Biophys. Acta 849, 7–15.

    Google Scholar 

  • Michejda, J., Guo, X. J., and Lauquin, G. J. M. (1989). In Anion Carriers of Mitochondrial Membranes (Azzi, A., Naecz, H. J., and Wojtczak, L., eds.), Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Michejda, J., Kmita, H., Stobienia, O., Budzinska, M., and Lauquin, G. J. M. (1994). In NATO ASI Series, Vol. H83, Molecular Biology of Mitochondrial Transport Systems (Forte, M., and Colombini, M., eds.), Springer-Verlag, Berlin, Heidelberg, pp 341–356.

    Google Scholar 

  • Moore, C. L., and Jobsis, F. F. (1970). Arch. Biochem. Biophys. 138, 295–305.

    Google Scholar 

  • Ouhabi, R., Rigoulet, M., and Guérin, B. (1989). FEBS Lett. 254, 199–202.

    Google Scholar 

  • Pahlman, I. L., Larsson, C., Avéret, N., Bunoust, O., Boubekeur, S., Gustafsson, L., and Rigoulet, M. (2002). J. Biol. Chem., 277, 27991–27995.

    Google Scholar 

  • Panov, A. V., and Scaduto, R. C., Jr. (1995). Arch. Biochem. Byophys. 316, 815–820.

    Google Scholar 

  • Rigoulet, M. (1990). Biochim. Biophys. Acta 1018, 185–189.

    Google Scholar 

  • Rigoulet, M., Guérin, B., and Denis, M. (1987). Eur. J. Biochem. 168, 275–279.

    Google Scholar 

  • Rigoulet, M., Velours, J., and Guérin, B. (1985). Eur. J. Biochem. 153, 601–607.

    Google Scholar 

  • Saks, V., Belikova, Y., Vasilyeva, E., Kuznetsov, A., Fontaine, E., Keriel, C., and Leverve, X. (1995a). Biochem. Biophys. Res. Commun. 208, 919–926.

    Google Scholar 

  • Saks, V. A., Belikova, Y. O., and Kuznetsov A. V. (1991). Biochim. Biophys. Acta 1074, 302–311.

    Google Scholar 

  • Saks, V. A., Kuznetsov, A.V., Khuchua, Z. A., Vasilyeva, E.V., Belikova, Y. O., Kesvatera, T., and Tiivel, T. (1995b). J. Mol. Cell. Cardiol. 27, 625–645.

    Google Scholar 

  • Saks, V. A., Vasilyeva, E., Belikova, Y. O., Kuznetzov, A. V., Lyapina, S., Petrova, L., and Perov, N. A. (1993). Biochim. Biophys. Acta 1144, 134–148.

    Google Scholar 

  • Seppet, E. K., Kaambre, T., Sikk, P., Tiivel, T., Vija, H., Tonkonogi, M., Sahlin, K., Kay, L., Appaix, F., Braun, U., Eimre, M., and Saks, V. A. (2001). Biochim. Biophys. Acta 1504, 379–395.

    Google Scholar 

  • Tager, J. M., Wanders, R. J. A., Groen, A. K., Kunz, W., Bohnensack, R., Kuster, U., Letko, B., Bohne, G., Duszynski, J., and Wojtczak, L. (1983). FEBS Lett. 151, 1–9.

    Google Scholar 

  • von Jagow, G., and Klingenberg, M. (1970). Eur. J. Biochem. 12, 583–592.

    Google Scholar 

  • Wilson, J. E. (1984). In Regulation of Carbohydrate Metabolism, Vol.I, (Beitner, R., ed.), CRC Press, Boca Raton, FL, pp. 45–85.

    Google Scholar 

  • Wilson, J. E., and Felgner, P. L. (1977). Mol. Cell. Biochem. 18, 39–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rigoulet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avéret, N., Aguilaniu, H., Bunoust, O. et al. NADH Is Specifically Channeled Through the Mitochondrial Porin Channel in Saccharomyces cerevisiae . J Bioenerg Biomembr 34, 499–506 (2002). https://doi.org/10.1023/A:1022526411188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022526411188

Navigation