Skip to main content
Log in

Brain Injury and Growth Inhibitory Factor (GIF)—a Minireview

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Growth inhibitory factor (GIF) is a small (7 kDa), heat-stable, acidic, hydrophilic metallothionein (MT)-like protein. GIF inhibits the neurotrophic activity in Alzheimer's disease (AD) brain extracts on neonatal rat cortical neurons in culture. GIF has been shown to be drastically reduced and down-regulated in AD brains. In neurodegenerative diseases in humans, GIF expression levels are reduced whereas GFAP expression levels are markedly induced in reactive astrocytes. Both GIF and GIF mRNA are present at high levels in reactive astrocytes following acute experimental brain injury. In chronological observations the level of GIF was found to increase more slowly and remain elevated for longer periods than that of glial fibrillary acidic protein (GFAP). These differential patterns and distribution of GIF and GFAP seem to be important in understanding the mechanism of brain tissue repair. The most important point concerning GIF in AD is not simply the decrease in the level of expression throughout the brain, but the drastic decrease in the level of expression in reactive astrocytes around senile plaques in AD. Although what makes the level of GIF decrease drastically in reactive astrocytes in AD is still unknown, supplements of GIF may be effective for AD, based on a review of current evidence. The processes of tissue repair following acute brain injury are considered to be different from those in AD from the viewpoint of reactive astrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Terry, R. D., Peck, A., De Teresa, R., Schechter, R., and Horoupian, D. S. 1981. Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann. Neurol. 10:184-192.

    PubMed  Google Scholar 

  2. Appel, S. H. 1981. A unifying hypothesis for the cause of amyotrophic lateral sclerosis, Parkinsonism, and Alzheimer's disease. Ann. Neurol. 10:499-505.

    PubMed  Google Scholar 

  3. Uchida, Y., Ihara, Y., and Tomonaga, M. 1988. Alzheimer's disease brain extract stimulates the survival of cerebral cortical neurons from neonatal rats. Biochem. Biophys. Res. Commun. 150:1263-1267.

    PubMed  Google Scholar 

  4. Ihara, Y. 1988. Massive somatodendritic sprouting of cortical neurons in Alzheimer's disease. Brain Res. 459:138-144.

    PubMed  Google Scholar 

  5. Uchida, Y., and Tomonaga, M. 1989. Neurotrophic action of Alzheimer's disease brain extract is due to the loss of inhibitory factors for survival and neurite formation of cerebral cortical neurons. Brain Res. 481:190-193.

    PubMed  Google Scholar 

  6. Uchida, Y., Takio, K., Titani, K., Ihara, Y., and Tomonaga, M. 1991. The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein-like protein. Neuron 7:337-347.

    PubMed  Google Scholar 

  7. Tsuji, S., Kobayahi, H., Uchida, Y., Ihara, Y., and Miyatake, T. 1992. Molecular cloning of human growth inhibitory factor cDNA and its down-regulation in Alzheimer's disease. The EMBO Journal, 13:4843-4850.

    Google Scholar 

  8. Palmiter, R. D., Findley, S. D., Whitemore, T. E., and Durnam, D. M. 1992. MT-III, a brain-specific member of the metallothionein gene family. Proc. Natl. Acad. Sci. USA, 89:6333-6337.

    Google Scholar 

  9. Masters, B. A., Quaife, C. J., Erickson, J. C., Kelly, J. K., Froelick, G. J., Zambrowicz, B. P., Brinster, R. L., and Palmiter, R. D. 1994. Methallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. J. Neurosci., 14:5844-5857.

    PubMed  Google Scholar 

  10. Anezaki, T., Ishiguro, H., Hozumi, I., Inuzuka, T., Hiraiwa, M., Kobayashi, H., Yuguchi, T., Wanaka, A., Uda, Y., Miyatake, T., Tohyama, M., and Tsuji, S. 1995. Expression of growth inhibitory factor (GIF) in normal and injured rat brains. Neurochem. Int. 27:89-94.

    PubMed  Google Scholar 

  11. Yuguchi, T., Kohmura, E., Yamada, K., Sasaki, T., Yamashita, T., Otsuki, H., Wanaka, A., Tohyama, M., Tsuji, S., and Hayakawa, T. 1995. Changes in growth inhibitory factor mRNA expression following facial nerve transection, Mol. Brain Res., 28:181-185.

    PubMed  Google Scholar 

  12. Uchida, Y., Shimizu, T., and Ihara, Y. 1994. Inhibition of β-amyloid-induced toxicity by GIF (in Japanese). Bulletin of the Japanese Society for Neurochemistry. 35(3):184-185.

    Google Scholar 

  13. Hozumi, I., Inuzuka, T., Hiraiwa, M., Uchida, Y., Anezaki, T., Ishiguro, H., Kobayashi, H., Uda, Y., Tadashi, M., and Tsuji, S. 1995. Changes of growth inhibitory factor after stab wounds in rat brain, Brain Res. 688:143-148.

    PubMed  Google Scholar 

  14. Hozumi, I., Inuzuka, T., Ishiguro H., Hiraiwa, M., Uchida, Y., and Tsuji, S. 1996. Immunoreactivity of growth inhibitory factor in normal rat brain and after stab wounds—An immunocytochemical study using confocal laser scanning microscopy. Brain Res. 741:197-204.

    PubMed  Google Scholar 

  15. Inuzuka, T., Hozumi, I., Tamura A., Hiraiwa, M., and Tsuji, S. 1996. Patterns of growth inhibitory factor (GIF) and glial fibrillary acidic protein relative level changes differ from left middle cerebral artery occlusion in rats. Brain Res. 709:151-153.

    PubMed  Google Scholar 

  16. Akiyama, K., Sato, M., Takeda, N., Tanaka. 1997. Changes in growth inhibitory factor (GIF) and glial fibrillary acidic protein (GFAP) after irradiation on neonatal rat brains. Trans. 11th International Congress of Neurological Surgery. 1775-1780.

  17. Kobayashi, H., Uchida, Y., Ihara, Y., Nakajima, K., Kohsaka S., Miyatake, T., and Tsuji, S. 1993. Molecular cloning of rat growth inhibitory factor cDNA and the expression in the central nervous system. Mol. Brain Res. 19:199-194.

    Article  Google Scholar 

  18. Pountney, D. L., Fundel, S. M., Faller, P., Birchler N. E., Hunziker, P., and Vasak, M. 1994. Isolation, primary structures and metal binding properties of neuronal growth inhibitory factor (GIF) from bovine and equine brain. FEBS Letters. 345:193-197.

    PubMed  Google Scholar 

  19. Quaife, C. J., Findley, S. D., Erickson, J. C., Froelick, G. J., Kelley, E. J., Zambrowicz, B. P., and Palmiter, R. D. 1994. Induction of a new metallothionein (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochem. 33:7250-7259.

    Google Scholar 

  20. Tsuji, S., Kobayashi, H., Uchida, Y., Ihara, Y., and Miyatake, T. 1995. Molecular cloning of human growth inhibitory factor cDNA and its down-regulation in Alzheimer's disease. Page 677-683, in Hanin, I. et al. (eds.), Alzheimer's and Parkinson's Disease, Plenum Press, New York.

    Google Scholar 

  21. Naruse, S., Igarashi, S., Furuya, T., Kobayashi, H., Miyatake, T., and Tsuji, S. 1994. Structures of human and mouse growth inhibitory factor-encoding genes. Genes. 144:283-287

    Google Scholar 

  22. Rudge, J. S. 1993. Astrocyte-derived neurotrophic factors. Pages 267-305, in Murphy, S. (ed.), Astrocytes-pharmacology and function, Academic Press, San Diego.

    Google Scholar 

  23. Imagawa, M., Ishikawa, Y., Shimamoto, H., Osada, S., and Nishihara, T. 1995. CTG triplet repeat in mouse growth inhibitory factor/metallothionein III gene promoter represses the transcriptional activity of the heterologous promoters. J. Biol. Chem. 270:20898-20900.

    PubMed  Google Scholar 

  24. Karin, M., 1985. Metallothioneins: proteins in search of function. Cell. 41:9-10.

    PubMed  Google Scholar 

  25. Kagi, J. H. R., and Schaeffer, A. 1988. Biochemistry of metallothionein. Biochemistry. 27:8509-8515

    PubMed  Google Scholar 

  26. Ebadi, M., Iversen, P. L., Hao, R., Cerutis, D. R., Rojas, C. P., Happe, H. K., Murrin, L. C., and Pfeiffer P. F. 1995. Expression and regulation of brain metallothionein. Neurochem. Int. 27:1-22.

    PubMed  Google Scholar 

  27. Kramer, K. K., Liu, J., Choudhuri, S., and Klaassen, C. D. 1996. Induction of metallothionein mRNA and protein in murine astrocyte cultures. Toxicol. Appl. Pharmacol. 136:94-100.

    PubMed  Google Scholar 

  28. Cousins, R. J. 1983. Metallothionein-aspects related to copper and zinc metabolism. J. Inher. Metab. Dis. 6Suppl. 1:15-21.

    PubMed  Google Scholar 

  29. Mizzen, C. A., Cartel, N. J., Yu, W. H., Fraser, P. E., and McLachlan, D. R. 1996. Sensitive detection of metallothioneins-1,-2 and-3 in tissue homogenates by immunoblotting: a method for enhanced membrane transfer and retention. J. biochem. biophys. Methods. 32:77-83.

    PubMed  Google Scholar 

  30. Young, J. K., Garvey, J. S., and Huang, P. C. 1991. Glial immunoreactivity for metallothionein in the rat brain. Glia. 4:602-610.

    PubMed  Google Scholar 

  31. Yamada, M., Hayashi, S., Hozumi, I., Inuzuka, T., Tsuji S., and Takahashi, H. 1996. Subcellular localization of growth inhibitory factor in rat brain: light and electron microscopic immunohistochemical studies. Brain Res. 735:257-264.

    PubMed  Google Scholar 

  32. Erickson, J. C., Sewell, A. K., Jensen, L. T., Winge, D. R., and Palmiter, R. D. 1994. Enhanced neurotrophic activity in Alzheimer's disease cortex is not associated with down-regulation of metallothionein-III (GIF). Brain Res. 649:297-304.

    PubMed  Google Scholar 

  33. Palmter, D. P. 1995. Constitutive expression of metallothionein-III (MT-III), but not MT-I, inhibits growth when cells become zinc deficient. Toxicol. Appl. Pharmacol. 135:139-145.

    PubMed  Google Scholar 

  34. Uchida, Y., and Ihara, Y. 1995. The N-terminal portion of growth inhibitory factor is sufficient for biological activity. J. Biol. Chem. 270:3365-3369.

    PubMed  Google Scholar 

  35. Sewell, A. K., Jensen L, T., Erickson, J. C., Palmiter R. D., and Winge, D. R. 1995. Bioactivity of metallothionein-3 correlates with its novel beta domain sequence rather than metal binding properties. Biochemistry 34:4740-4747.

    PubMed  Google Scholar 

  36. Vallee, B. L. 1995. The function of metallothionein. Neurochem. Int. 27:22-33.

    Article  Google Scholar 

  37. Abel, J., and de Ruiter, N. 1989. Inhibition of hydroxyl-radical-generated DNA degradation by metallothionein. Toxicol. Lett. 47:191-196.

    PubMed  Google Scholar 

  38. Thornalley, P. J., and Vasak, M. 1985. Possible role for metallothionein against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim. Biophys. Acta. 827:36-44.

    PubMed  Google Scholar 

  39. Uchida, Y. 1994. Growth-Inhibitory Factor, matallothionein-like protein, and neurodegenerative diseases. Biol. Signals. 3:211-215.

    PubMed  Google Scholar 

  40. Duffy, P. E., Rapport, M., and Graf, L. 1980. Glial fibrillary acidic protein and Alzheimer-type senile dementia, Neurology, 30:778-782.

    PubMed  Google Scholar 

  41. Mandybur, T. I., and Chuirazzi, C. C. 1990. Astrocytes and the plaques of Alzheimer's disease, Neurology, 40:635-639.

    PubMed  Google Scholar 

  42. Delacourte, A. 1990. General and dramatic glial reaction in Alzheimer's brains Neurology, 40:33-37.

    PubMed  Google Scholar 

  43. Pike, C. J., Cummings, B. J., and Cotman, C. W. 1995. Early association of reactive astrocytes with senile plaques in Alzheimer's disease. Exp. Neurol. 132:172-179.

    PubMed  Google Scholar 

  44. Norton, W. T., Aquino, D. A., Hozumi, I., Chiu, F.-C., and Brosnan, C. F. 1992. Quantitative aspects of reactive gliosis: a review, Neurochem. Res. 17:877-885.

    PubMed  Google Scholar 

  45. Hozumi, I., Chiu, F.-C., and Norton, W. T. 1990. Biochemical and immunocytochemical changes in glial fibrillary acidic protein after stab wounds. Brain Res. 524:64-71.

    PubMed  Google Scholar 

  46. Hozumi, I., Aquino, D. A., and Norton, W. T. 1990. GFAP mRNA levels following stab wounds in rat brain. Brain Res. 534:291-294.

    PubMed  Google Scholar 

  47. Yuguchi, T., Kohmura, E., Yamada, K., Sasaki, T., Yamashita, T., Otsuki, H., Kataoka, K., Tsuji, S., and Hayakawa, Y. 1995. Expression of growth inhibitory factor mRNA following injury in rat. 1995. J. Neurotrauma. 12:299-306.

    PubMed  Google Scholar 

  48. Inuzuka, Tamura A., Sato, S., Kirino, T., Yanagisawa, K., Toyoshima, I., and Miyatake, T. 1990. Changes in the concentrations of cerebral proteins following occlusion of the middle cerebral artery in rats. Stroke. 21:917-922.

    PubMed  Google Scholar 

  49. Holdorff, B. 1975. Radiation damage to the brain. Page 639-663. in Vinken, P.J., and Bruyn, G.W. (eds.), Handbook of Neurology, Vol. 23, Injuries of the brain and skull, Part I., North-Holland publishing company, Amsterdam.

    Google Scholar 

  50. Aquino, D. A., Chiu, F.-C., Brosnan, C. F., and Norton, W. T. 1988. Glial fibrillary acidic protein increases in the spinal cord of Lewis rats with acute experimental autoimmune encephalitis. J. Neurochem. 51:1085-1096.

    PubMed  Google Scholar 

  51. Glenner, G. G., and Wong, C. W. 1984. Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120:885-890.

    PubMed  Google Scholar 

  52. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K. 1985. Amyloid plaque core protein in Alzheimer's disease and Down syndrome. Proc. Natl. Acad. Sci. 82:4245-4249.

    PubMed  Google Scholar 

  53. Selkoe, D. J., Abraham, C. R., Podlisny, M. B., and Duffy, L. K. 1986. Isolation of low-molecular-weight proteins from amyloid plaque fibers in Alzheimer's disease. J. Neurochem. 46:1820-1834.

    PubMed  Google Scholar 

  54. Selkoe, D. J. 1994. Alzheimer's disease: a central role for amyloid. J. Neuropath. Exp. Neurol. 53:438-447.

    PubMed  Google Scholar 

  55. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagopian, S., Johnson-Wood, K., Khan, K., Lee, M., Leibowitz, P., Lieberburg, I., Little, S., Masliah, E., McConlogue, L., Montoya-Zavala, M., Mucke, L., Paganini, L., Penniman, E., Power M., Schenk, D., Seubert, P., Snyder, B., Soriano, F., Tan, H., Vitale, J., Wadsworth, S., Wolozin, B., and Zhao, J. 1995. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precusor protein. Nature. 373:523-527.

    Article  PubMed  Google Scholar 

  56. Duguid, J. R., Bohmont, C. W., Liu, N., and Tourtellotte, W. W. 1989. Changes in brain gene expression shared by scrapie and Alzheimer's disease. Proc. Natl. Acad. Sci. 86:7276-7264.

    Google Scholar 

  57. Rothwell, N. J. 1996. The role of cytokines in neurodegeneration. Pages 145-177. in Rothwell, N.J. (ed.), Cytokines in the nervous system, Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  58. Bush, A. I., Pettingell, W. H., Multhaup, G., Paradis, Paradis, M. D., Vonsattel, J.-P., Gusella, J. F., Beyreuther, K., Masters, C. L., and Tanzi, R. E. 1994. Rapid induction of Alzheimer A β amyloid formation by zinc. Science 265:1464-1467.

    PubMed  Google Scholar 

  59. Smith, M. A., Perry, G., Richey, P. L., Sayre, L. M., Anderson, V. E., Beal, M. F., and Kowall, N. 1996. Oxidative damage in Alzheimer's. Nature. 382:120-121.

    Article  Google Scholar 

  60. Graves, A. B., White, E., Koepsell, T. D., Reifler, B. V., Belle, G., Larson, E. B., and Raskind, M. 1990. The association between head trauma and Alzheimer's disease. Am. J. Epidemiol. 131:491-501.

    PubMed  Google Scholar 

  61. Roberts, G. W., Gentleman, S. M., Lynch, A., and Graham, D. I. 1991. βA4 amyloid protein deposition in brain after head trauma. Lancet. 338:1422-1423.

    PubMed  Google Scholar 

  62. Siddique, T., and Deng, H.-X. 1996. Genetics of amyotrophic lateral sclerosis. Hum. Mol. Genet. 5:1465-1470.

    PubMed  Google Scholar 

  63. Yim, M. B., Kang, J-H. Yim, H-S., Kwak, H-S., Chock, P. B., and Stadtman, E. R. 1996. A gain-of-function of an amyotrophic lateral sclerosis-associated Cu, Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc. Natl. Acad. Sci. 93:5709-5714.

    Google Scholar 

  64. Tamai, K. T., Gralla, E. B., Ellerby, L. M., Valentine, J. S. and Thiele, D. J. 1993. Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proc. Natl. Acad. Sci. 990:8013-8017.

    Google Scholar 

  65. O'Brien, J. S., Carson, G. S., Seo, H.-C., Hiraiwa, M., Weiler, S., Tomich, J., Barranger J. A., Kahn, M., and Azuma, N., Kishimoto, Y. 1995. Identification of the neurotrophic factor sequence of prosaposin. FASEB J. 9:681-685.

    PubMed  Google Scholar 

  66. Sano, A., Matsuda, S., Wen, T.-C., Kotani, Y., Kondoh, K., Ueno, S., Kakimoto, Y., Yoshimura, H., and Sakanaka, M. 1994. Protection by prosaposin against ischemia-induced learning disability and neuronal loss. Biochem. Biophys. Res. Commun. 204:994-1000.

    PubMed  Google Scholar 

  67. Ignatius, M. J., Gebicke-Haerter P. J., Skene, J. H. P., Schilling, J. W., Weisgraber, K. H., Mahley, R. W., and Shooter E. M. 1986. Expression of apolipoprotein E during nerve degeneration and regeneration, Proc. Natl. Acad. Sci. 83:1125-1129.

    PubMed  Google Scholar 

  68. Mahley, R. W. 1988. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology, Science 240:622-630.

    PubMed  Google Scholar 

  69. Williams, L. R., Varon, S., Peterson, G. M., Wictorin, K., Fischer, W., Bjorklund, A., and Gage, F. H. 1986. Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc. Natl. Acad. Sci. 83:9231-9235.

    Google Scholar 

  70. Hefti, F., Dravid, A., and Hartikka, J. 1984. Chronic intraventricular injections of nerve growth factor elevate hippocampal choline acetyltransferase activity in adult rats with partial septo-hippocampal lesions. Brain Res. 293:305-311.

    PubMed  Google Scholar 

  71. Shigeno, T., Mima, T., Takakura, K., Graham, D. I., Kato, G., Hashimoto, Y., and Furukawa, S. 1991. Ameriolation of delayed neuronal death in the hippocampus by nerve growth factor. J. Neurosci. 11:2914-2919.

    PubMed  Google Scholar 

  72. Mattson, M. P., Murrain, M., Guthrie, P. B., and Kater, S. B. 1989. Fibroblast growth factor and glutamate: Opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J. Neurosci. 9:3728-3740.

    PubMed  Google Scholar 

  73. Cheng, B., and Mattson, M. P. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemia damage by stabilizing calcium homeostasis. Neuron, 7:1031-1041.

  74. Cordell, E. G., Bednar, M. M., Howard, D. B., Sporn, M. B. 1993. Transforming growth factor-β1 reduces infarct size after experimental cerebral ischemia in a rabbit model. Stroke 24:558-562.

    PubMed  Google Scholar 

  75. Recio-Pinto, E., and Ishii, D. N. 1984. Effects of insulin, insulin-like growth factor-II and nerve growth factor on neurite out-growth in cultured human neuroblastoma cells. Brain Res. 302:323-334.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hozumi, I., Inuzuka, T. & Tsuji, S. Brain Injury and Growth Inhibitory Factor (GIF)—a Minireview. Neurochem Res 23, 319–328 (1998). https://doi.org/10.1023/A:1022401315721

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022401315721

Navigation