Skip to main content
Log in

Differential effects of intravitreal optic nerve and sciatic nerve grafts on the survival of retinal ganglion cells and the regeneration of their axons

  • Published:
Journal of Neurocytology

Abstract

We have investigated the effects of intravitreal sciatic nerve (SN) and/or optic nerve (ON) grafts on the survival and the axonal regeneration of retinal ganglion cells (RGCs). Following transection of the ON, approximately 40% RGCs survived at 7 days post-axotomy (dpa). Results showed that the intravitreal ON graft significantly promoted the survival of RGCs at 7 dpa (39,063 vs 28,246). Intravitreal SN graft, however, did not rescue axotomized RGCs at 5, 7 or 14 dpa. Axotomized RGCs could be induced to regenerate axons along a segment of SN graft attached to the proximal stump of ON. On average, 608 axotomized RGCs were induced to regenerate axons along the attached SN graft. The presence of intravitreal SN graft promoted about 100% increase in the number of regenerating RGCs (1,227) relative to the control groups. The intravitreal ON graft, surprisingly, also induced about 100% more regenerating RGCs (1220) than in the control group. When SN and ON grafts were co-transplanted into the vitreous, about 200% more regenerating RGCs (1916) were observed than in the control group. These findings illustrated that the intravitreal ON graft rescued axotomized RGCs and enhanced the regeneration of retinal axons. This is the first report to show that ON promotes RGC axonal regeneration. The intravitreal SN graft did not rescue RGCs but promoted axonal regeneration. The differential effects of intravitreal ON and SN grafts on the survival and the RGC regeneration suggest that these might be two independently operating events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkelaar, M., Clarke, D. B., Wang, Y. C., Bray, G. M. & Aguayo, A. J. (1994) Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. Journal of Neuroscience 14, 4368–4374.

    Google Scholar 

  • Berry, M., Carlile, J. & Hunter, A. (1996) Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. Journal of Neurocytology 25, 147–170.

    Google Scholar 

  • Berry, M., Carlile, J., Hunter, A., Tsang, W., Rosustrel, P. & Sievers, J. (1999) Optic nerve regeneration after intravitreal peripheral nerve implants: Trajectories of axons regrowing through the optic chiasm into the optic tracts. Journal of Neurocytology 28, 721–741.

    Google Scholar 

  • Carmignoto, G., Maffei, L., Candeo, P., Canella, R. & Comelli, C. (1989) Effect of NGF on the survival of rat retinal ganglion cells following optic nerve section. Journal of Neuroscience 9, 1263–1272.

    Google Scholar 

  • Chau, C. H., Shum, D. K. Y., Cho, K. S. & So, K. F. (1994) Chrondrotinase may be involved in providing a permissive environment for nerve regeneration. Neuroscience Letters 45(Suppl.), S62.

    Google Scholar 

  • Chen, M. S., Huber, A. B., van der Haar, M. E., Frank, M., Schnell, L., Spillmann, A. A., Christ, F. & Schwab, M. E. (2000) Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434–439.

    Google Scholar 

  • Cho, E. Y. & So, K. F. (1987) Rate of regrowth of damaged retinal ganglion cell axons regenerating in a peripheral nerve graft in adult hamsters. Brain Reserch 419, 369–374.

    Google Scholar 

  • Cho, E. Y. & So, K. F. (1992) Characterization of the sprouting response of axon-like processes from retinal ganglion cells after axotomy in adult hamsters: A model using intravitreal implantation of a peripheral nerve. Journal of Neurocytology 21, 589–603.

    Google Scholar 

  • Cho, K. S., Chan, P. M., So, K. F., Yip, H. K. & Chung, S. K. (1999a) Ciliary neurotrophic factor promotes the regrowth capacity but not the survival of intraorbitally axotomized retinal ganglion cells in adult hamsters. Neuroscience 94, 623–628.

    Google Scholar 

  • Cho, K. S., Xiao, Y. M., So, K. F., Diao, Y. C. & Chung, S. K. (1999b) Synergistic effect of optic and peripheral nerve grafts on sprouting of axon-like processes of axotomized retinal ganglion cells in adult hamsters. Neuroscience Letters 265, 175–178.

    Google Scholar 

  • Clarke, D. B., Bray, G. M. & Aguayo, A. J. (1998) Prolonged administration of NT-4/5 fails to rescue most axotomized retinal ganglion cells in adult rats. Vision Research 38, 1517–1524.

    Google Scholar 

  • Cohen, A., Bray, G. M. & Aguayo, A. J. (1994) Neurotrophin-4/5 (NT-4/5) increases adult rat retinal ganglion cell survival and neurite outgrowth in vitro. Journal of Neurobiology 25, 953–959.

    Google Scholar 

  • Cui, Q., Lu, Q., So, K. F. & Yip, H. K. (1999) CNTF, not other trophic factors, promotes axonal regeneration of axotomized retinal ganglion cells in adult hamsters. Investigative Ophthalmology and Visual Science 40, 760–766.

    Google Scholar 

  • Dezawa, M. & Nagano, T. (1996) Immunohistochemical localization of cell adhesion molecules and cellcell contact proteins during regeneration of the rat optic nerve induced by sciatic nerve autotransplantation. Anatomical Record 246, 114–126.

    Google Scholar 

  • Di polo, A., Aigner, L. J., Dunn, R. J., Bray, G. M. & Aguayo, A. J. (1998) Prolonged delivery of brain-derived neurotrophic factor by adenovirusinfected Muller cells temporarily rescues injured retinal ganglion cells. Proceedings of the National Academy of Sciences USA 95, 3978–3983.

    Google Scholar 

  • Dobrea, G. M., Unnerstall, J. R. & Rao, M. S. (1992) The expression of CNTF message and immunoreactivity in the central and peripheral nervous system of the rat. Brain Research Developmental Brain Research 66, 209–219.

    Google Scholar 

  • Eckenstein, F., Woodward, W. R. & Nishi, R. (1991) Differential localization and possible functions of aFGF and bFGF in the central and peripheral nervous systems. Annals of the New York Academy of Sciences 638, 348–360.

    Google Scholar 

  • Fisher, D., Heiduschka, P. & Thanos, S. (2001) Lens-injury-stimulated axonal regeneration throughout the optic pathway of adult rats. Experimental Neurology 172, 257–272.

    Google Scholar 

  • Fischer, D., Pavlidis, M. & Thanos, S. (2000) Cataractogenic lens injury prevents traumatic ganglion cell death and promotes axonal regeneration both in vivo and in culture. Investigative Ophthalmology and Visual Science 41, 3943–3954.

    Google Scholar 

  • Furukawa, S., Furukawa, Y., Satoyoshi, E. & Hayashi, K. (1986) Synthesis and secretion of nerve growth factor by mouse astroglial cells in culture. Biochemical and Biophysical Research Communications 136, 57–63.

    Google Scholar 

  • Grandpre, T., Nakamura, F., Vartanian, T. & Strittmatter, S. M. (2000) Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439–444.

    Google Scholar 

  • Lau, K. C., So, K. F. & Tay, D. (1994a) Intravitreal transplantation of a segment of peripheral nerve enhances axonal regeneration of retinal ganglion cells following distal axotomy. Experimental Neurology 128, 211–215.

    Google Scholar 

  • Lau, K. C., So, K. F., Tay, D. & Leung, M. C. (1994b) NADPH-diaphorase neurons in the retina of the hamster. Journal of Comparative Neurology 350, 550–558.

    Google Scholar 

  • Lei, J. L., Lau, K. C., So, K. F., Cho, E. Y. & Tay, D. (1995) Morphological plasticity of axotomized retinal ganglion cells following intravitreal transplantation of a peripheral nerve segment. Journal of Neurocytology 24, 497–506.

    Google Scholar 

  • Leon, S., Yin, Y., Nguyen, J., Irwin, N. & Benowitz, L. I. (2000) Lens injury stimulates axon regeneration in the mature rat optic nerve. Journal of Neuroscience 20, 4615–4626.

    Google Scholar 

  • Mansour-Robaey, S., Clarke, D. B., Wang, Y. C., Bray, G. M. & Aguayo, A. J. (1994) Effects of ocular injury and administration of brain-derived neurotrophic factor on survival and regrowth of axotomized retinal ganglion cells. Proceedings of the National Academy of Sciences USA 91, 1632–1636.

    Google Scholar 

  • Mckerracher, L., David, S., Jackson, D. L., Kottis, V., Dunn, R. J. & Braun, P. E. (1994) Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805–811.

    Google Scholar 

  • Mey, J. & Thanos, S. (1993) Intravitreal injections of neurotrophic factors support the survival of axotomized retinal ganglion cells in adult rats in vivo. Brain Research 602, 304–317.

    Google Scholar 

  • Meyer, M., Matsuoka, I., Wetmore, C., Olson, L. & Thoenen, H. (1992) Enhanced synthesis of brainderived neurotrophic factor in the lesioned peripheral nerve: Different mechanisms are responsible for the regulation of BDNF and NGF mRNA. Journal of Cell Biology 119, 45–54.

    Google Scholar 

  • Meyer-Franke, A., Kaplan, M. R., Pfrieger, F. W. & Barres, B. A. (1995) Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15, 805–819.

    Google Scholar 

  • Mukhopadhyay, G., Doherty, P., Walsh, F. S., Crocker, P. R. & Filbin, M. T. (1994) A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757–767.

    Google Scholar 

  • Ng, T. F., So, K. F. & Chung, S. K. (1993) intravitreal implantation of a peripheral nerve graft enhances expression of GAP-43 in retinal ganglion cells following axotomy. Neuroscience Letters (supplement) 44, S30.

    Google Scholar 

  • Ng, T. F., So, K. F. & Chung, S. K. (1995) Influence of peripheral nerve grafts on the expression of GAP-43 in regenerating retinal ganglion cells in adult hamsters. Journal of Neurocytology 24, 487–496.

    Google Scholar 

  • Osawa, T., Tohyama, K. & Ide, C. (1990) Allogeneic nerve grafts in the rat, with special reference to the role of Schwann cell basal laminae in nerve regeneration. Journal of Neurocytology 19, 833–849.

    Google Scholar 

  • Peinado-Ramon, P., Salvador, M., Villegasperez, M. P. & Vidal-Sanz, M. (1996) Effects of axotomy and intraocular administration of NT-4, NT-3, and brain-derived neurotrophic factor on the survival of adult rat retinal ganglion cells. A quantitative in vivo study. Investigative Ophthalmology and Visual Science 37, 489–500.

    Google Scholar 

  • Quigley, H. A., Mckinnon, S. J., Zack, D. J., Pease, M. E., Kerrigan-Baumrind, L. A., Kerrigan, D. F. & Mitchell, R. S. (2000) Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Investigative Ophthalmology and Visual Science 41, 3460–3466.

    Google Scholar 

  • Sawai, H., Clarke, D. B., Kittlerova, P., Bray, G. M. & Aguayo, A. J. (1996) Brain-derived neurotrophic factor and neurotrophin-4/5 stimulate growth of axonal branches from regenerating retinal ganglion cells. Journal of Neuroscience 16, 3887–3894.

    Google Scholar 

  • Schaden, H., Stuermer, C. A. & Bahr, M. (1994) GAP-43 immunoreactivity and axon regeneration in retinal ganglion cells of the rat. Journal of Neurobiology 25, 1570–1578.

    Google Scholar 

  • Sievers, J., Hausmann, B., Unsicker, K. & Berry, M. (1987) Fibroblast growth factors promote the survival of adult rat retinal ganglion cells after transection of the optic nerve. Neuroscience Letters 76, 157–162.

    Google Scholar 

  • So, K. F. & Aguayo, A. J. (1985) Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats. Brain Research 328, 349–354.

    Google Scholar 

  • So, K. F. & Yip, H. K. (2001) The use of peripheral nerve transplants to enhance axonal regeneration in CNS neurons. In Axonal Regeneration in the Central Nervous System (edited by Ingoglia, N. A. & Murray, M.) pp. 505–528. New York: Marcel Dekker Inc.

    Google Scholar 

  • Thanos, S., & Boxberg, Y. (1989) Factors influencing regeneration of retinal ganglion cell axons in adult mammals. Metabolic Brain Disorders 4, 67–72.

    Google Scholar 

  • Vidal-Sanz, M., Bray, G. M., Villegas-perez, M. P., Thanos, S. & Aguayo, A. J. (1987) Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. Journal of Neuroscience 7, 2894–2909.

    Google Scholar 

  • Villegas-Perez, M. P., Vidal-Sanz, M., Bray, G. M. & Aguayo, A. J. (1988) Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats. Journal of Neuroscience 8, 265–280.

    Google Scholar 

  • Yip, H. K., Cheung, Z. H., So, K. F. & Wu, W. T. (2001) Temporal profile of cytochrome c expression in axotomized retinal ganglion cells in hamsters:Animmunohistochemical analysis. (ARVO Abstract). Investigative Ophthalmology and Visual Science 42(4): S824. Abstract no. 4424.

    Google Scholar 

  • Yip, H. K., Hu, B. & So, K. F. (1997) Fibroblast, but not Schwann cells, promote the survival of retinal ganglion cells after optic nerve lesion. Neuroscience Letters 47(Suppl.), S14.

    Google Scholar 

  • You, S. W., So, K. F. & Yip, H. K. (2000) Axonal regeneration of retinal ganglion cells depending on the distance of axotomy in adult hamsters. Investigative Ophthalmology and Visual Science 41, 3165–3170.

    Google Scholar 

  • Zeng, B. Y., Anderson, P. N., Campbell, G. & Lieberman, A. R. (1995) Regenerative and other responses to injury in the retinal stump of the optic nerve in adult albino rats: Transection of the intracranial optic nerve. Journal of Anatomy 186, 495–508.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, K., Chung, S., Yip, H. et al. Differential effects of intravitreal optic nerve and sciatic nerve grafts on the survival of retinal ganglion cells and the regeneration of their axons. J Neurocytol 30, 983–991 (2001). https://doi.org/10.1023/A:1021884606771

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021884606771

Keywords

Navigation