Skip to main content
Log in

Initiation of Sodium Channel Clustering at the Node of Ranvier in the Mouse Optic Nerve

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ion fluxes in mammalian myelinated axons are restricted to the nodes of Ranvier, where, in particular, voltage-gated Na+ channels are clustered at a high density. The node of Ranvier is separated from the internode by two distinct domains of the axolemma, the paranode and the juxtaparanode. Each axonal domain is characterized by the presence of a specific protein complex. Although oligodendrocytes and/or myelin membranes are believed to play some instructive roles in the organization of axonal domains, the mechanisms leading to their localized distribution are not well understood. In this paper we focused on the involvement of myelin sheaths in this domain organization and examined the distribution of axonal components in the optic nerves of wild type, hypomyelinating jimpy mice and demyelinating PLP transgenic mice. The results showed that the clustering of Na+ channels does not require junction-like structures to be formed between the glial processes and axons, but requires mature oligodendrocytes to be present in close vicinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Salzer, J. L. 1997. Clustering sodium channels at the node of Ranvier: Close encounters of the axo-glia kind. Neuron 18:843–846.

    Google Scholar 

  2. Pedraza, L., Huang, J. K., and Colman, D. R. 2001. Organizing principles of the axoglial apparatus. Neuron 30:335–344.

    Google Scholar 

  3. Hirano, A. and Dembitzer, H. M. 1982. Further studies on the transverse bands. J. Neurocytol. 11:851–856.

    Google Scholar 

  4. Wang, H., Kunkel, D. D., Martin, T. M., Schwartzkroin, P. A., and Tempel, B. L. 1993. Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature 365:75–79.

    Google Scholar 

  5. Rasband, M. N., Trimmer, J. S., Schwarz, T. L., Levinson, S. R., Ellisman, M. H., Schachner, M., and Shrager, P. 1998. Potassium channel distribution, clustering, and function in remyelinating rat axons. J. Neurosci. 18:36–47.

    Google Scholar 

  6. Vabnick, I., Trimmer, J. S., Schwarz, T. L., Levinson, S. R., Risal, D., and Shrager, P. 1999. Dynamic potassium channel distributions during axonal development prevent aberrant firing patterns. J. Neurosci. 19:747–758.

    Google Scholar 

  7. Boiko, T., Rasband, M. N., Levinson, S. R., Galdwell, J. H., Mandel, G., Trimmer, J. S., and Matthews, G. 2001. Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30:91–104.

    Google Scholar 

  8. Kaplan, M. R., Cho, M. H., Ullian, E. M., Isom, L. L., Levinson, S. R., and Barres, B. A. 2001. Differential control of clustering of the sodium channels Nav1.2 and Nav1.6 at developing CNS nodes of Ranvier. Neuron 30:105–119.

    Google Scholar 

  9. Peles, E., Nativ, M., Lustig, M., Grumet, M., Schilling, J., Martinez, R., Plowman, G. D., and Schlessinger, J. 1997. Identification of a novel contactin-associated transmembrane receptor with multiple domains implicated in protein-protein interactions. EMBO J. 16:978–988.

    Google Scholar 

  10. Einheber, S., Zanazzi, G., Ching, W., Scherer, S., Milner, T. A., Peles, E., and Salzer, J. L. 1997. The axonal membrane protein Caspr, a homologue of neurexin IV is a component of the septate-like paranodal junctions that assemble during myelination. J. Cell Biol. 139:1495–1506.

    Google Scholar 

  11. Kaplan, M. R., Meyer-Franke, A., Lambert, S., Bennett, V., Duncan, I. D., Levinson, S. R., and Barres, B. A. 1997. Induction of sodium channel clustering by oligodendrocytes. Nature 136:724–728.

    Google Scholar 

  12. Deerinck, T. J., Levinson, R. S., Bennett, V. G., and Ellisman. M. H., 1997. Clustering of voltage-sensitive sodium channels on axons is independent of direct Schwann cell contact in the dystrophic mouse. J. Neurosci. 17:5080–5088.

    Google Scholar 

  13. Lambert, S., Davis, J. Q., and Bennett, V. 1997. Morphogenesis of the node of Ranvier: Co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates. J. Neurosci. 17:7025–7036.

    Google Scholar 

  14. Vabnick, I., Novakivuc, S. D., Levinson, S. R., Schachner, M., and Schrager, P. 1996. The clustering of axonal sodium channels during development of the peripheral nervous system. J. Neurosci. 16:4914–4922.

    Google Scholar 

  15. Dugandzija-Novakovic, S., Koszowski, A. G., Levinson, R. S., and Shrager, P. 1995. Clustering of Na+ channels and node of Ranvier formation in remyelianting axons. J. Neurosci. 15:492–503.

    Google Scholar 

  16. Rasband, M. N., Peles, E., Trimmer, J. S., Levinson, R., Lux, S. E., and Shrager, P. 1999. Dependence of nodal sodium channel clustering of paranodal axoglial contact in the developing CNS. J. Neurosci. 19:7516–7528.

    Google Scholar 

  17. Mathis, C., Denisenko-Nehrbass, N., Girault, J. A., and Borrelli, E. 2001. Essential role of oligodendrocytes in the formation and maintenance of central nervous system nodal regions. Development 128:4881–4890.

    Google Scholar 

  18. Arroyo, E. J., Xu, T., Grinspan, J., Lambert, S., Levinson, S. R., Brophy, P. J., Peles, E., and Scherer, S. S. 2002. Genetic dysmyelination alters the molecular architecture of the nodal region. J. Neurosci. 22:1726–1737.

    Google Scholar 

  19. Nave, K. A., Bloom, F. E., and Milner, R. J. 1987. A single nucleotide difference in the gene for myelin proteolipid protein defines the jimpy mutation in mouse. J. Nuerochem. 49:1873–1877.

    Google Scholar 

  20. Kagawa, T., Ikenaka, K., Inoue, Y., Kuriyama, S., Tsuji, T., Nakao, J., Nakajima, K., Aruga, J., Okano, H., and Mikoshiba, K. 1994. Glial cell degeneration and hypomyelination caused by overexpression of myelin proteolipid protein gene. Neuron 13:427–442.

    Google Scholar 

  21. Ishibashi, T., Dupree, J. L., Ikenaka, K., Hirahara, Y., Honke, K., Peles, E., Popko, B., Suzuki, K., Nishino, H., and Baba, H. 2002. A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J. Neurosci. 22:6507–6514.

    Google Scholar 

  22. Trimmer, J. S. 1991. Immunological identification and characterization of a delayed rectifier K+ channels polypeptide in rat brain. Proc. Natl. Acad. Sci. U.S.A. 88:10764–10768.

    Google Scholar 

  23. Yamamura, T., Konola, J. T., Wekerle, H., and Lees, M. B. 1991. Monoclonal antibodies against myelin proteolipid protein: Identification and characterization of two major determinants. J. Neurochem. 57:1671–1680.

    Google Scholar 

  24. Baba, H., Akita, H., Ishibashi, T., Inoue, Y., Nakahira, K., and Ikenaka, K. 1999. Completion of myelin compaction, but not the attachment of oligodendroglial processes triggers K+ channel clustering. J. Neurosci. Res. 58:752–764.

    Google Scholar 

  25. Rasband, M. N. and Shrager, P. 2000. Ion channel sequestration in central nervous system axons. J. Physiol. 15:525 Pt 1:63–73.

    Google Scholar 

  26. Knapp, P. E. and Skoff, R. P. 1987. A defect in the cell cycle of neuroglia in the myelin deficient jimpy mouse. Dev. Brain Res. 35:301–306.

    Google Scholar 

  27. Duncan, I. D., Hammangm, J. P., Goda, S., and Quarles, R. H. 1989. Myelination in the jimpy mouse in the absence of proteolipid protein. Glia. 2:148–154.

    Google Scholar 

  28. Srinivasan, Y., Elmer, L., Davis, J., Bennett, V., and Angelides, K. 1988. Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature 333:177–180.

    Google Scholar 

  29. Kordeli, E., Lambert, S., and Bennett, V. 1995. Ankyrin G: A new ankyrin gene with neural-specific isoforms localized at the axonal initial segment and node of Ranvier. J. Biol. Chem. 270:2354–2359.

    Google Scholar 

  30. Jenkins, S. M. and Bennett, V. 2002. Developing nodes of Ranvier are defined by ankyrin-G clustering and are independent of paranodal axoglial adhesion. Proc. Natl. Acad. Sci. USA 99:2303–2308.

    Google Scholar 

  31. Inoue, Y., Kagawa, T., Matsumura, Y., Ikenaka, K., and Mikohsiba, K. 1996. Cell death of oligodendrocytes or demyelination induced by overexpression of proteolipid protein depending on expressed gene dosage. Neurosci. Res. 25:161–172.

    Google Scholar 

  32. Dupree, J. L., Girault, J. A., and Popko, B. 1999. Axo-glial interactions regulate the localization of axonal paranodal proteins. J. Cell Biol. 147:1145–1151.

    Google Scholar 

  33. Boyle, M. E. T., Berglund, E. O., Murai, K. K., Weber, L., Peles, E., and Ranscht, B. 2001. Contactin orchestrates assembly of septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30:385–397.

    Google Scholar 

  34. Skoff and Knapp, 1992. Biology and Chemistry. In Myelin. Martenson, R. E., (ed.). CRC Press, Boca Raton, FL, pp. 653–676.

    Google Scholar 

  35. Pribyl, T. M., Campagnoni, C. W., Kampf, K., Ellison, J. A., Landry, C. F., Kashima, T., McMahon, J., and Campagnoni, A. T. 1996. Expression of the myelin basic protein gene locus in neurons and oligodendrocytes in the human fetal central nervous system. J. Comp. Neurol. 374:342–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Ikenaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishibashi, T., Ikenaka, K., Shimizu, T. et al. Initiation of Sodium Channel Clustering at the Node of Ranvier in the Mouse Optic Nerve. Neurochem Res 28, 117–125 (2003). https://doi.org/10.1023/A:1021608514646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021608514646

Navigation