Skip to main content
Log in

Spectral characteristics of light sources for S-cone stimulation

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose: Electrophysiological investigations of the short-wavelength sensitive pathway of the human eye require the use of a suitable light source as a S-cone stimulator. Different light sources with their spectral distribution properties were investigated and compared with the ideal S-cone stimulator. Methods: First, the theoretical background of the calculation of relative cone energy absorption from the spectral distribution function of the light source is summarized. From the results of the calculation, the photometric properties of the ideal S-cone stimulator will be derived. The calculation procedure was applied to virtual light sources (computer generated spectral distribution functions with different medium wavelengths and spectrum widths) and to real light sources (blue and green light emitting diodes, blue phosphor of CRT-monitor, multimedia projector, LCD monitor and notebook display). The calculated relative cone absorbencies are compared to the conditions of an ideal S-cone stimulator. Results: Monochromatic light sources with wavelengths of less than 456 nm are close to the conditions of an ideal S-cone stimulator. Spectrum widths up to 21 nm do not affect the S-cone activation significantly (S-cone activation change < 0.2%). Blue light emitting diodes with peak wavelength at 448 nm and spectrum bandwidth of 25 nm are very useful for S-cone stimulation (S-cone activation ≈95%). A suitable display for S-cone stimulation is the Trinitron computer monitor (S-cone activation ≈87%). The multimedia projector has a S-cone activation up to 91%, but their spectral distribution properties depends on the selected intensity. LCD monitor and notebook displays have a lower S-cone activation (≤ 74%). Conclusion: Carefully selecting the blue light source for S-cone stimulation can reduce the unwanted L- and M-cone activation down to 4% for M-cones and 1.5% for L-cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hart WM. Acquired dyschromatopsias. Surv Ophthalmol 1987; 32(1): 10–31.

    Google Scholar 

  2. Estévez O, Spekreijse H. The ‘silent Substitution’ method in visual research. Vision Res 1982; 22: 681–91.

    Google Scholar 

  3. Straub W, Kroll P, Küchle HJ. Augenärztliche Untersuchungsmethoden. Stuttgart: Enke, 1995.

    Google Scholar 

  4. Hunt RWG. Measuring Color. 2nd ed. Ellis Horwood series in applied science and industrial technology, 1995.

  5. Lang H. Farbwiedergabe in denMedien: Fernsehen, Filmund Druck. Göttingen: Muster-Schmidt, 1995.

    Google Scholar 

  6. Jägle H, Albrecht JF, Baseler HA, Seeliger M, Sharpe LT. S-cone topography in normals and blue-cone monochromats. XXXIV ISCEV Symposium, St John's College, Sydney, Australia, 13-17 February 2000, abstract book, p. 53.

  7. Sawusch M, Pokorny J, Smith VC. Clinical electroretinography for short wavelength sensitive cones. Invest Ophthalmol Vis Sci 1987; 28: 966–974.

    Google Scholar 

  8. Greenstein VC, Hood DC, Ritch R, Steinberger D, Carr RE. S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma. Invest Ophthalmol Vis Sci 1989; 30(8): 1732–37.

    Google Scholar 

  9. Gouras P, MacKay CJ. Electroretinographic responses of the short-wavelength-sensitive cones. Invest Ophthalmol Vis Sci 1990; 31(7): 1203–9.

    Google Scholar 

  10. Gouras P, MacKay CJ, Roy M, Yamamoto S. Brain responses of short-wavelength cones. Clin Vision Sci 1993; 8(6): 519–27.

    Google Scholar 

  11. van Norren D, Padmos P. Human and macaque blue cones studied with electroretinography. Vision Res 1973; 13: 1241–54.

    Google Scholar 

  12. Niepel G, Dodt E. Pattern electroretinogram of the blue cones. Graefe's Arch Clin Exp Ophthalmol 1989; 227: 45–50.

    Google Scholar 

  13. Uji Y, Yokoyama M. Blue cone response in glaucomatous eyes studied with electroretinography. Mie Med J 1981; XXXI(1): 213–18.

    Google Scholar 

  14. Horiguchi M, Miyake Y, Kondo M, Suzuki S, Tanikawa A, Koo HM. Blue light-emitting diode built-in contact lens electrode can record human s-cone electroretinogram. Invest Ophtalmol Vis Sci 1995; 36(8): 1730–32.

    Google Scholar 

  15. Kelly JP, Fourman SM, Jindra L. Foveal color and luminance sensitivity losses in glaucoma. Ophthalmic Surgery and Lasers 1996; 27(3): 179–187.

    Google Scholar 

  16. Jünemann A, Korth M, Nguyen NX, Martus P. Die Untersuchung des blauempfindlichen VEPs beim primären Offenwinkelglaukom und beim Glaukomverdacht. Search on Glaucoma 1994; 2(4): 89–94.

    Google Scholar 

  17. Korth M, Nguyen NX, Jünemann A, Martus P, Jonas JB. VEP test of the blue-sensitive pathway in glaucoma. Invest Ophthalmol Vis Sci 1994; 35(5): 2599–2610.

    Google Scholar 

  18. Carpenter RHS, Robson JG. Vision Research: a practical guide to laboratory methods. Oxford University Press, 1999.

  19. Stewart WC, Chauhan BC. Newer visual function tests in the evaluation of glaucoma. Survey of Ophthalmology 1995; 40(2): 119–135.

    Google Scholar 

  20. Sutter, E. Schutz vor optischer Strahlung: Laserstrahlung, inkohärente Strahlung, Sonnenstrahlung. Berlin; Offenbach: VDE-Verlag, 1999.

    Google Scholar 

  21. Simonson SE, Rosenberg T. Reappraisal of a short-wavelength-sensitive (S-cone) recording technique in routine clinical electroretinography. Documenta Ophthalmologica 1996; 91: 323–332.

    Google Scholar 

  22. Stockman A, Sharpe LT. Cone spectral sensitivities and color matching. In: Gegenfurtner KR, Sharpe LT, eds. Color vision: from genes to perception. Cambridge: Cambridge Univ. Press, 1999: 53–87.

    Google Scholar 

  23. Schlegelmilch F, Tornow RP, Schellhorn K, Husar P, Henning G, Nolte R. Comparison of light sources for S-cone stimulation. Ophthalmic Research 2000; 32(2), p. 56.

    Google Scholar 

  24. Sample PA, Bosworth CF, Blumenthal EZ, Girkin C, Weinreb RN. Visual functionspecific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Invest Ophthalmol Vis Sci 2000; 41(7): 1783–1790.

    Google Scholar 

  25. Drasdo N, Aldebasi YH, Chiti Z, Mortlock KE, Morgan JE, North RV. The S-cone PhNR and pattern ERG in primary open angle glaucoma. Invest Ophthalmol Vis Sci 2001; 42(6): 1266–1272.

    Google Scholar 

  26. Wyszecki G, Styles WS. Color science: concepts and methods, quantitative data and formulae. 2nd edition. New York, Chichester, Brisbane, Toronto, Singapore: John Wiley & Sons, 1982.

    Google Scholar 

  27. Keating D, Parks S, Evans A. Technical aspects of multifocal ERG recording. Doc Ophthalmol 2000; 100: 77–98.

    Google Scholar 

  28. Horn F, Korth M. Differences between pattern-evoked electroretinograms obtained by a scanning laser ophthalmoscope and by a mechanical mirror system. Doc Ophthalmol 1994; 88(1): 65–75.

    Google Scholar 

  29. Tornow RP. Stimulating multifocal ERG's using a scanning laser ophthalmoscope: differences to monitor-based systems. [ARVO abstract]. Invest Ophtalmol Vis Sci 1998; 39: p S972, #4488.

    Google Scholar 

  30. Tornow RP, Elsner AE, Moraes L, Kunze C. Stimulating multifocal ERG's (MF-ERG) using a scanning laser ophthalmoscope (SLO): effect of different laser-wavelength. [ARVO abstract]. Invest Ophthalmol Vis Sci 1999; 40(4): S16, #82.

    Google Scholar 

  31. Schlegelmilch F, Schellhorn K, Tornow RP, Husar P, Henning G. Visual evoked responses of cone isolated stimulation for objective perimetry. [ARVO Abstract]. Invest Ophthalmol Vis Sci. 2001; 42(4): S789; #4227.

    Google Scholar 

  32. Mollon JD, Baker MR. The use of CRT displays in research on colour vision. In Colour vision deficiencies XII Drum B ed. Dordrecht: Kluwer Academic, 1995: 423–44.

    Google Scholar 

  33. Bach M, Meigen T, Strasburger H. Raster-scan cathode-ray tubes for vision research - limits of resolution in spcae, time and intensity, and some solutions. Spatial Vision 1997; 10(4): 403–414.

    Google Scholar 

  34. Keller PA. Electronic display measurements: concepts, techniques and instrumentation. New York, Chichester, Weinheim, Brisbanem, Singapore, Toronto: John Wiley & Sons, 1997.

    Google Scholar 

  35. Stilling R. Einsatz der Scanning Laser Densitometrie und der Farbperimetrie zur Untersuchung der Netzhautfunktion bei Augengesunden und bei Patienten mit degenerativen Netzhauterkrankungen. Aachen: Shaker, 1999.

    Google Scholar 

  36. Kodak Wratten Gelatin Filter Transmission Curves. Kodak Photographic Filters Handbook. http://www.geocities.com/thombell/curves.html

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlegelmilch, F., Nolte, R., Schellhorn, K. et al. Spectral characteristics of light sources for S-cone stimulation. Doc Ophthalmol 105, 339–363 (2002). https://doi.org/10.1023/A:1021271603178

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021271603178

Navigation