Skip to main content
Log in

Comparisons of the NACP Self-Oligomerizations Induced by Aβ25-35 in the Presence of Dicyclohexylcarbodiimide and N-(Ethoxycarbonyl)-2-Ethoxy-1,2-Dihydroquinoline

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

NACP, the precursor protein of the non-amyloid β/A4 protein (Aβ) component of Alzheimer's disease (AD) amyloid, also known as α-synuclein was shown to undergo self-oligomerization only in the presence of a modified Aβ fragment (residues 25–35) by using a relatively hydrophobic coupling reagent, dicyclohexylcarbodiimide (DCCD). Since the oligomerization not only required a relatively high concentration of DCCD but also its efficiency was suppressed even at a slightly basic pH of 7.5, another coupling reagent called N-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) was examined in order to make use of this technique to access the functional aspects of NACP in vitro by exploring more accurate and reproducible reaction conditions. The EEDQ also gave rise to the NACP oligomerization only in the presence of Aβ25-35 among the variously modified Aβ peptides. The reagent was about three times more effective than DCCD in terms of its optimal concentration to visualize the oligomers. In addition, its oligomerizing potency was not affected by the basic condition. Although physiological and pathological significance of the NACP self-oligomerization are currently unknown, this dramatic phenomenon and its visualization technique could shed light on the determination of molecular relationships of NACP with various intracellular or extracellular biomolecules related to the pathological conditions of Alzheimer's and Parkinson's diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ueda, K., Fukushima, H., Masliah, E., Xia, Y., Iwai, A., Yoshimoto, M., Otero, D. A. C., Kondo, J., Ihara, Y., and Saitoh, T. 1993. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 90:11282-11286.

    PubMed  Google Scholar 

  2. Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., Rohan de Silva, H. A., Kittel, A., and Saitoh, T. 1995. The precursor protein of non-Aβ component of Alzheimer's disease amyloid is a presynaptic protein of the central nervous system. Neuron 14:467-475.

    PubMed  Google Scholar 

  3. Jakes, R., Spillantini, M. G., and Goedert, M. 1994. Identification of two distinct synucleins from human brain. FEBS Lett. 345:27-32.

    PubMed  Google Scholar 

  4. Maroteaux, L., Campanelli, J. T., and Scheller, R. H. 1988. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8:2804-2815.

    PubMed  Google Scholar 

  5. Maroteaux, L., and Scheller, R. H. 1991. The rat brain synucleins; family of proteins transiently associated with neuronal membrane. Mol. Brain Res. 11:335-343.

    PubMed  Google Scholar 

  6. Nakajo, S., Omata, K., Aiuchi, T., Shibayama, T., Okahashi, I., Ochiai, H., Nakai, Y., Nakaya, K., and Nakamura, Y. 1990. Purification and characterization of a novel brain-specific 14-kDa protein. J. Neurochem. 55:2031-2038.

    PubMed  Google Scholar 

  7. Nakajo, S., Shioda, S., Nakai, Y., and Nakaya, K. 1994. Localization of phosphoneuroprotein 14 (PNP 14) and its mRNA expression in rat brain determined by immunocytochemistry and in situ hybridization. Mol. Brain Res. 27:81-86.

    PubMed  Google Scholar 

  8. George, J. M., Jim, H., Woods, W. S., and Clayton, D. F. 1995. Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron 15:361-372.

    PubMed  Google Scholar 

  9. Ueda, K., Saitoh, T., and Mori, H. 1994. Tissue-dependent alternative splicing of mRNA for NACP, the precursor of non-Aβ component of Alzheimer's disease amyloid. Biochem. Biophys. Res. Commun. 205:1366-1372.

    PubMed  Google Scholar 

  10. Brookes, A.J., and St Clair, D. 1994. Synuclein proteins and Alzheimer's disease. Trends Neurosci. 17:404-405.

    PubMed  Google Scholar 

  11. Heintz, N., and Zoghbi, H. 1997. α-synuclein—a link between Parkinson and Alzheimer diseases? Nat. Genet. 16:325-327.

    PubMed  Google Scholar 

  12. Goedert, M. 1997. The awakening of α-synuclein. Nature 388:232-233.

    PubMed  Google Scholar 

  13. Spillantini, M. G., Schmidt, M. L., Lee, V. M.-Y., Trojanowski, J. Q., Jakes, R., and Goedert, M. 1997. α-synuclein in Lewy bodies. Nature 388:839-840.

    PubMed  Google Scholar 

  14. Han, H., Weinreb, P.H., and Lansbury, P. T., Jr. 1995. The core Alzheimer's peptide NAC forms amyloid fibrils which seed and are seeded by β-amyloid: is NAC a common trigger or target in neurodegenerative disease? Chem. Biol. 2:163-169.

    PubMed  Google Scholar 

  15. Iwai, A., Yoshimoto, M., Masliah, E., and Saitoh, T. 1995. Non-Aβ component of Alzheimer's disease amyloid (NAC) is amyloidogenic. Biochemistry 34:10139-10145.

    PubMed  Google Scholar 

  16. Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mellon, A., Ostaszewski, B. L., Lieberberg, I., Koo, E. H., Schenk, D., Teplow, D. B., and Selkoe, D. J. 1992. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359:322-325.

    PubMed  Google Scholar 

  17. Seubert, P., Vigo-Pelfrey, C., Esch, F., Lee, M., Dovey, H., Davis, D., Sinha, S., Schlossmacher, M., Whaley, J., Swindlehurst, C., McCormack, R., Wolfert, R., Selkoe, D., Lieberburg, I., and Schenk, D. 1992. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature 359:325-327.

    PubMed  Google Scholar 

  18. Shoji, M., Golde, T. E., Ghiso, J., Cheung, T. T., Estus, S., Shaffer, L. M., Cai, X.-D., McKay, D. M., Tintner, R., Frangione, B., and Younkin, S. G. 1992. Production of the Alzheimer amyloid protein by normal proteolytic processing. Science 258:126-129.

    Google Scholar 

  19. Busciglio, J., Gabuxda, D. H., Matsudaira, P., and Yankner, B. A. 1993. Generation of β-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc. Natl. Acad. Sci. USA 90:2092-2096.

    PubMed  Google Scholar 

  20. Yoshimoto, M., Iwai, A., Kang, D., Otero, D. A. C., Xia, Y., and Saitoh, T. 1995. NACP, the precursor protein of the non-amyloid β/A4 protein (Aβ) component of Alzheimer disease amyloid, binds Aβ and stimulates Aβ aggregation. Proc. Natl. Acad. Sci. USA 92:9141-9145.

    PubMed  Google Scholar 

  21. Vogel, G. 1997. Gene discovery offers tentative clues to Parkinson's. Science 276:1973.

    PubMed  Google Scholar 

  22. Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lassarini, A. M., Duvoisin, R. C., Iorio, G. D., Golbe, L. I., and Nussbaum, R. L. 1997. Mutation in the-synuclein gene identified in families with Parkinson's disease. Science 276:2045-2047.

    PubMed  Google Scholar 

  23. Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., and Lansbury, P. T., Jr. 1996. NACP, a protein implicated in Alzheimer's disease and learning is natively unfolded. Biochemistry 35:13709-13715.

    PubMed  Google Scholar 

  24. Kim, J. 1997. Evidence that the precursor protein of non-Aβ component of Alzheimer's disease amyloid (NACP) has an extended structure primarily composed of random-coil. Mol. Cells 7:78-83.

    PubMed  Google Scholar 

  25. Paik, S.R., Lee, J.-H., Kim, D.-H., Chang, C.-S., Kim, Y.-S. 1998. Self-oligomerization of NACP, the precursor protein of the nonamyloid β/A4 protein (Aβ) component of Alzheimer's disease amyloid, observed in the presence of a C-terminal Aβ fragment (residues 25–35). FEBS Lett. 421:73-76.

    PubMed  Google Scholar 

  26. Paik, S. R., Lee, J.-H., Kim, D.-H., Chang, C.-S., Kim, J. 1997. Aluminum-induced structural alterations of the precusor of the non-Aβ component of Alzheimer's disease amyloid. Arch. Biochem. Biophys. 344:325-334.

    PubMed  Google Scholar 

  27. Morrissey, J. H. 1981. Silver stain for proteins in polyacrylamide gels: A modified procedure with enhanced uniform sensitivity. Anal. Biochem. 117:307-310.

    PubMed  Google Scholar 

  28. Yankner, B. A., Duffy, L. K., Kirschner, D. A. 1990. Neurotrophic and neurotoxic effects of Amyloid β protein: Reversal by tachykinin neuropeptides. Science 250:279-282.

    PubMed  Google Scholar 

  29. Azzi, A., Casey, R. P., and Nalecz, M. J. 1984. The effect of N′,N′-dicyclohexylcarbodiimide on enzymes of bioenergetic relevance. Biochim. Biophys. Acta 768:209-226.

    PubMed  Google Scholar 

  30. Laikind, P. K., Hill, F. C., and Allison, W. S. 1985. The use of [3H]aniline to identify the essential carboxyl group in the bovine mitochondrial F1-ATPase that reacts with 1-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline. Arch. Biochem. Biophys. 240:904-920.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Shin, HJ., Chang, CS. et al. Comparisons of the NACP Self-Oligomerizations Induced by Aβ25-35 in the Presence of Dicyclohexylcarbodiimide and N-(Ethoxycarbonyl)-2-Ethoxy-1,2-Dihydroquinoline. Neurochem Res 23, 1427–1434 (1998). https://doi.org/10.1023/A:1020711025418

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020711025418

Navigation