Skip to main content
Log in

Thermodynamic In Vitro Studies as a Method to Investigate the Pharmacodynamic Behavior of Adenosine A1 Receptor Ligands

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. A thermodynamic analysis of the binding to rat cortex adenosine A1, receptor of N6-substituted (full agonists) and N6-substituted-deoxyribose (partial agonists) adenosine derivatives was performed. The intrinsic activity of the compounds was evaluated by measurements of the inhibition of forskolin stimulated 3′, 5′-cyclic adenosine mono-phosphate (c-AMP) levels in isolated epididymal rat adipocytes.

Methods. The thermodynamic parameters ΔG° (standard free energy), ΔH °(standard enthalpy), and ΔS° (standard entropy) of the binding equilibrium were determined by means of affinity measurements carried out at different temperatures (0, 10, 20, 25, 30° C). Levels of c-AMP were evaluated performing competitive protein binding assays.

Results. The binding of the ligands increases with temperature enhancement and, as a consequence, is totally entropy driven. Standard entropy values correlate significantly with intrinsic activity ones.

Conclusions. It is proposed the data obtained by these in vitro experiments can be used to investigate the in vivo pharmacodynamic of A1, full and partial agonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. B. Fredholm, M. P. Abbracchio, G. Burnstock, J. W. Daly, T. K. Harden, K. A. Jacobson, P. Leff, and M. Williams. Nomenclature and classification of purinoceptors. Pharmacol. Rev. 46:143–156 (1994).

    Google Scholar 

  2. K. A. Jacobson, B. K. Trivedi, P. C. Churchill, and M. Williams. Novel therapeutics acting via purinergic receptors. Biochem. Pharmacol. 41:1399–1410 (1991).

    Google Scholar 

  3. C. Heurteaux, I. Lauritzen, C. Widmann, and M. Lazdunski. Essential role of adenosine, adenosine A1 receptors, and ATP-sensitive K+ channels in cerebral ischemic preconditioning. Proc. Natl. Acad. Sci. USA 92:4666–4670 (1995).

    Google Scholar 

  4. A. L. Tucker and J. Linde. Cloned receptors and cardiovascular responses to adenosine. Cardiovasc. Res. 27:54–61 (1993).

    Google Scholar 

  5. P. J. M. Van Galen, G. L. Stiles, G. Michaels, and K. A. Jacobson. Adenosine A1 and A2 receptors: structure-function relationships. Med. Res. Rev. 12:423–471 (1992).

    Google Scholar 

  6. D. Van Calker, M. Muller, and B. Hamprecht. Adenosine regulates via two different types of receptors the accumulation of cyclic AMP in cultured brain cells. J. Neurochem. 33:999–1008 (1979).

    Google Scholar 

  7. P. A. Borea, K. Varani, A. Dalpiaz, A. Capuzzo, E. Fabbri, and A. P. IJzerman. Full and partial agonistic behaviour and thermodynamic binding parameters of adenosine A1 receptor ligands. Eur. J. Pharmacol.-Mol. Pharmacol. Sect. 267:55–61 (1994).

    Google Scholar 

  8. A. P. IJzerman, E. M. van der Wenden, J. K. von Frijtag Drabbe Künzel, R. A. A. Mathôt, M. Danhof, P. A. Borea, and K. Varani. Partial agonism of theophylline-7-riboside on adenosine receptors. Naunyn-Schmiedeberg's Arch. Pharmacol. 350:638–645 (1994).

    Google Scholar 

  9. E. M. Van der Wenden, J. K. von Frijtag Drabbe Künzel, R. A. A. Mathot, M. Danhof, A. P. IJzerman, and W. Soudijn. Ribose-modified adenosine analogues as potential partial agonists for the adenosine receptor. J. Med. Chem. 38:4000–4006 (1995).

    Google Scholar 

  10. R. A. A. Mathot, E. M. van der Wenden, S. W. Soudijn, A. P. IJzerman, and M. Danhof. Deoxyribose analogues of N6-cyclopentyladenosine (CPA): partial agonists at the adenosine A1 receptor in vivo. Br. J. Pharmacol. 116:1957–1964 (1995).

    Google Scholar 

  11. B. Testa. Drugs as chemical messageas: molecular structure, biological context and structure activity relationships. Med. Chem. Res. 7:340–365 (1997).

    Google Scholar 

  12. B. Testa, B. K. Lemont, and P. A. Carrupt. A systems approach to molecular structure, intermolecular recognition and emergence-dissovelvence in medicinal research. Med. Res. Rev. 17:303–326 (1997).

    Google Scholar 

  13. P. H. Van der Graaf and M. Danhof. Analysis of drug-receptor interactions in vivo: a new approach in pharmacokinetic-pharmacodynamic modelling. Int. J. Clin. Pharm. Ther. 35:442–446 (1997).

    Google Scholar 

  14. P. Gilli, V. Ferretti, G. Gilli, and P. A. Borea. Enthalpy-entropy compensation in drug-receptor binding. J. Phys. Chem. 98:1515–1518 (1994).

    Google Scholar 

  15. P. H. Eliard and G. G. Rousseau. Thermodynamics of steroid binding to the human glucocorticoid receptor. Biochem. J. 218:395–404 (1984).

    Google Scholar 

  16. O. H. Lowry, N. J. Rosebrough, A. L. Fazz, and L. Randall. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 123:265–275 (1951).

    Google Scholar 

  17. M. Rodbell. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 239:375–382 (1964).

    Google Scholar 

  18. C. Nordstedt and B. B. Fredholm. A modification of a protein binding method for rapid quantification of c-AMP in cell culture supernatants and body fluids. Anal Biochem. 189:231–236.

  19. Y. C. Cheng and W. H. Prusoff. Relationships between the inhibition constant (Ki) and the concentration of inhibitor which cause 50 percent inhibition (IC50) of an enzymatic reaction, Biochem. Pharmacol. 22:3099–3108 (1973).

    Google Scholar 

  20. M. J. Lohse, V. Lenschow, and U. Schwabe. Two affinity states of Ri adenosine receptors in Brain membranes. Analysis of guanine nucleotide and temperature effects on radioligand binding. Mol. Pharmacol. 26:1–9 (1984).

    Google Scholar 

  21. G. Milligan, R. A. Bond, and M. Lee. Inverse agonism: pharmacological curiosity or potential therapeutic strategy? Trends Pharmacol. Sci. 16:10–13 (1995).

    Google Scholar 

  22. P. A. Borea, A. Dalpiaz, K. Varani, S. Gessi, and G. Gilli. Binding thermodynamics at A1 and A2A adenosine receptors. Life Sci. 59:1373–1388, 1996.

    Google Scholar 

  23. J. M. Sturtevant. Heat capacity and entropy changes in processes involving proteins, Proc. Natl. Acad. Sci. USA 74:2236–2241 (1977).

    Google Scholar 

  24. P. A. Borea, K. Varani, L. Guerra, P. Gilli, and G. Gilli. Binding thermodynamics of A1 adenosine receptor ligands. Mol. Neuropharmacol. 2:273–281 (1992).

    Google Scholar 

  25. A. Dalpiaz, K. Varani, P. A. Borea, C. Martini, G. Chiellini, and A. Lucacchini. Biochemical and pharmacological characterization of periodate-oxidized adenosine analogues at adenosine A1 receptors. Biochim. Biophis. Acta 1267:145–151 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Andrea Borea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalpiaz, A., Scatturin, A., Pavan, B. et al. Thermodynamic In Vitro Studies as a Method to Investigate the Pharmacodynamic Behavior of Adenosine A1 Receptor Ligands. Pharm Res 16, 1054–1058 (1999). https://doi.org/10.1023/A:1018987816891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018987816891

Navigation