Skip to main content
Log in

Immobilized Artificial Membrane (lAM)-HPLC for Partition Studies of Neutral and Ionized Acids and Bases in Comparison with the Liposomal Partition System

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To study the partitioning of model acids ((RS)-warfarin and salicylic acid), and bases (lidocaine, (RS)-propranolol and diazepam), with immobilized artificial membrane (lAM)-HPLC, as compared to partitioning in the standardized phosphatidylcholine liposome/buffer system.

Methods. The pH-dependent apparent partition coefficients D were calculated from capacity factors (k′IAM) obtained by IAM-HPLC, using a 11-carboxylundecylphosphocholine column. For lipophilic compounds k′IAM, values were determined with organic modifiers and extrapolation to 100% water phase (k′IAMw) was optimized. Temperature dependence was explored (23 to 45° C), and Gibbs free energy (ΔG), partial molar enthalpy (ΔH) and change in entropy (ΔS) were calculated. Equilibrium dialysis was used for the partitioning studies with the liposome/buffer system.

Results. For extrapolation of k′IAMw, linear plots were obtained both with the respective dielectric constants and the mole fractions of the organic modifier. All tested compounds showed a similar pH-D diagram in both systems; however, significant differences were reproducibly found in the pH range of 5 to 8. In all cases, ΔG and ΔH were negative, whereas ΔS values were negative for acids and positive for bases.

Conclusions. In both partitioning systems, D values decreased significantly with the change from the neutral to the charged ionization state of the solute. The differences found under physiological conditions, i.e. around pH 7.4, were attributed to nonspecific interactions of the drug with the silica surface of the IAM column.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Herbette, A. M. Katz, and J. M. Sturtevant. Comparisons of the interaction of propranolol and timolol with model and biological membrane systems. Mol. Pharmacol. 24:259-269 (1983).

    PubMed  Google Scholar 

  2. R. P. Mason, D. G. Rhodes, and L. G. Herbette. Reevaluating equilibrium and kinetic binding parameters for lipophilic drugs based on a structural model for drug interaction with biological membranes. J. Med. Chem. 34:869-877 (1991).

    PubMed  Google Scholar 

  3. G. V. Betageri and J. A. Rogers. Thermodynamics of partitioning of β-blockers in the n-octanol-buffer and liposome systems. Int. J. Pharm. 36:165-173 (1987).

    Google Scholar 

  4. G. M. Pauletti and H. Wunderli-Allenspach. Partition coefficients in vitro: artificial membranes as a standardized distribution model. Eur. J. Pharm. Sci. 1:273-282 (1994).

    Google Scholar 

  5. C. Pidgeon and U. V. Venkataram. Immobilized artificial membrane chromatography: supports composed of membrane lipids. Anal. Biochem. 176:36-47 (1989).

    PubMed  Google Scholar 

  6. S. Ong, H. Liu, X. Qiu, G. Bhat, and C. Pidgeon. Membrane partition coefficients chromatographically measured using immobilized artificial membrane surfaces. Anal. Chem. 67:755-762 (1995).

    PubMed  Google Scholar 

  7. D. Rhee, R. Markovich, W. G. Chae, X. Qiu, and C. Pidgeon. Chromatographic surfaces prepared from lyso phosphatidylcholine ligands. Anal. Chim. Acta 297:377-386 (1994).

    Google Scholar 

  8. J. J. Michels and J. G. Dorsey. Retention in reversed-phase liquid chromatography: solvatochromic investigation of homologous alcohol-water binary mobile phases. J. Chromatogr. 457:85-98 (1988).

    PubMed  Google Scholar 

  9. J. G. Dorsey and M. G. Khaledi. Hydrophobicity estimations by reversed-phase liquid chromatography. Implications for biological partitioning processes. J. Chromatogr. A 656:485-499 (1993).

    Google Scholar 

  10. S. Ong and C. Pidgeon. Thermodynamics of solute partitioning into immobilized artificial membranes. Anal. Chem. 67:2119-2128 (1995).

    PubMed  Google Scholar 

  11. L. A. Cole and J. G. Dorsey. Temperature dependence of retention in reversed-phase liquid chromatography. 1. Stationary-phase considerations. Anal. Chem. 64:1317-1323 (1992).

    PubMed  Google Scholar 

  12. C. Ottiger and H. Wunderli-Allenspach. Partition behaviour of acids and bases in a phosphatidylcholine liposome-buffer equilibrium dialysis system. Eur. J. Pharm. Sci. 5:223-231 (1997).

    Google Scholar 

  13. T. Teorell and E. Stenhagen. Ein Universalpuffer für den pH-Bereich 2.0 bis 12.0. Biochem. Z. 299:416-419 (1938).

    Google Scholar 

  14. H. H. Landolt and R. L. Börnstein. Elektrische Eigenschaften I. Band 2, Springer Verlag, Stuttgart, 1960.

    Google Scholar 

  15. P. S. Albright and L. J. Gosting. Dielectric constants of the methanol-water system from 5 to 55°. J. Am. Chem. Soc. 68:1061-1063 (1946).

    Google Scholar 

  16. G. Kortüm, S. D. Gokhale and H. Wilski. Über Leitfähigkeitsmessungen an Tetraäthylammoniumjodid in Lösungsmittelgemischen. Z. Physik. Chem., Neue Folge 4:286-296 (1955).

    Google Scholar 

  17. H. S. Harned and B. B. Owen. The physical chemistry of electrolytic solutions. Reinhold Publishing Corporation, New York, 1958.

    Google Scholar 

  18. K. Hartke, H. Hartke, E. Mutschler, G. Ruecker and M. Wichtl. DAB 10: Deutsches Arzneibuch, Kommentar. Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1991.

    Google Scholar 

  19. C. Pidgeon, S. Ong, H. Choi, and H. Liu. Preparation of mixed ligand immobilized artificial membranes for predicting drug binding to membranes. Anal. Chem. 66:2701-2709 (1994).

    PubMed  Google Scholar 

  20. S. D. Krämer and H. Wunderli-Allenspach. The pH-dependence in the partitioning behaviour of (RS)-[3H]Propranolol between MDCK cell lipid vesicles and buffer. Pharm. Res. 13:1851-1855 (1996).

    PubMed  Google Scholar 

  21. S. D. Krämer, C. Jakits-Deiser, and H. Wunderli-Allenspach. Free fatty acids cause pH-dependent changes in drug-lipid membrane interactions around physiological pH. Pharm. Res. 14:827-832 (1997).

    PubMed  Google Scholar 

  22. S. D. Krämer, A. Braun, C. Jakits-Deiser, and H. Wunderli-Allenspach. Towards the predictability of drug-lipid membrane interactions: the pH-dependent affinity of propranolol to phosphatidylinositol containing liposomes. Pharm. Res. 15:739-744 (1998).

    PubMed  Google Scholar 

  23. R. J. Markovich, X. Qiu, D. E. Nichols, C. Pidgeon, B. Invergo, and F. M. Alvarez. Silica subsurface amine effect on the chemical stability and chromatographic properties of end-capped immobilized artificial membrane surfaces. Anal. Chem. 63:1851-1860 (1991).

    PubMed  Google Scholar 

  24. P. Schindler and H. R. Kamber. Die Acidität von Silanolgruppen. Helv. Chim. Acta 51:1781-1786 (1968).

    Google Scholar 

  25. Y. Guo, G. A. Imahori, and L. A. Colon. Hydrolytically stable amino-silica glass coating material for manipulation of the electroosmotic flow in capillary electrophoresis. J. Chromatogr. A 744:17-29 (1996).

    PubMed  Google Scholar 

  26. J. W. Dolan and L. R. Snyder. Troubleshooting LC systems: a comprehensive approach to troubleshooting LC equipment and separations. Humana Press, Clifton, NJ, 1989.

    Google Scholar 

  27. A. Avdeef, K. J. Box, J. E. A. Comer, C. Hibbert, and K. Y. Tam. pH-metric logP 10. Determination of liposomal membrane-water partition coefficients of ionizable drugs. Pharm. Res. 15:209-215 (1998).

    PubMed  Google Scholar 

  28. F. Barbato, M. I. La Rotonda, and F. Quaglia. Interactions of nonsteroidal antiinflammatory drugs with phospholipids: Comparison between octanol/buffer partition coefficients and chromatographic indexes on immobilized artificial membranes. J. Pharm. Sci. 86:225-229 (1997).

    PubMed  Google Scholar 

  29. J. B. Hasted, D. M. Ritson, and C. H. Collie. Dielectric properties of aqueous ionic solutions. Parts I and II. J. Chem. Physics 16:1-21 (1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi Wunderli-Allenspach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ottiger, C., Wunderli-Allenspach, H. Immobilized Artificial Membrane (lAM)-HPLC for Partition Studies of Neutral and Ionized Acids and Bases in Comparison with the Liposomal Partition System. Pharm Res 16, 643–650 (1999). https://doi.org/10.1023/A:1018808104653

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018808104653

Navigation