Skip to main content
Log in

Desmin-lacZ transgene expression and regeneration within skeletal muscle transplants

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the initiation and time course of the regeneration process in fragments of skeletal muscle transplants as a function of muscle tissue age at implantation. The appearance of desmin occurs at the very beginning of myogenesis. The transgenic desminnls lacZ mice used in the study bear a transgene in which the 1 kb DNA 5′ regulatory sequence of the desmin gene is linked to a reporter gene coding for Escherichia coliβ-galactosidase. The desmin lacZ transgene labels muscle cells in which the desmin synthesis programme has commenced. We implanted pectoralis muscle fragments from fetal transgenic embryos and mature and old transgenic mice into mature non-transgenic mice. Early events of myogenesis occurring during regeneration started sooner in transplants from 4-month-old (day 3 post-implantation) muscle than in those from 24-month-old (day 5-6 post-implantation) muscle, and they lasted longer in those from young (day 17 post-implantation) than in those from old (day 14 post-implantation) muscle fragments. In adult muscle, transgene activation proceeded from the periphery toward the centre of the transplant. In transplants from fetal 18-day-old pectoralis, myotubes with transgene activity were observed from day 1 to day 19. Desmin immunoreactivity, which appeared about one day after transgene activation, was followed by myosin expression. In adult transplants, the continuity of laminin labelling was disrupted around degenerative fibres, illustrating alteration of the extracellular matrix. Our data suggest that satellite cells from old muscle tissue have lower proliferative capacity and/or less access to trophic substances released by the host (damaged fibres, vascularization) than those from fetal or young adult muscle

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ALLEN, R. E. & RANKIN, L. L. (1990) Regulation of satellite cells during skeletal muscle growth and development. Proc. Soc. Exp. Biol. Med. 194, 81-6.

    PubMed  CAS  Google Scholar 

  • ASKANAS, V., BORNEMANN, A. & ENGEL, W. K. (1990) Immunocytochemical localization of desmin at human neuromuscular junction. Neurology 40, 949-53.

    PubMed  CAS  Google Scholar 

  • BASSAGLIA, Y. & GAUTRON, J. (1995) Fast and slow rat muscles degenerate and regenerate differently after whole crush injury. J. Muscle Res. Cell Motil. 16, 420-9.

    Article  PubMed  CAS  Google Scholar 

  • BISCHOFF, R. (1986) A satellite cell mitogen from crushed adult muscle. Dev. Biol. 115, 140-7.

    Article  PubMed  CAS  Google Scholar 

  • BISCHOFF, R. (1990) Cell cycle commitment of rat muscle satellite cells. J. Cell Biol. 11, 201-7.

    Article  Google Scholar 

  • BORNEMANN, A. & SCHALBRUCH, H. (1992) Desmin and vimentin in regenerating muscle. Muscle Nerve 15, 14-20.

    Article  PubMed  CAS  Google Scholar 

  • COSSU, G., RINALDI, G., SENNI, M. J., MOLVIARO, M. & VIVARELLI, E. (1988) Early mammalian myoblasts are resistant to phorbol ester induced block of differentiation. Development 102, 65-9.

    PubMed  CAS  Google Scholar 

  • DARR, K. C. & SCHULTZ, E. (1987) Exercise induced satellite cell activation in growing and mature skeletal muscle. J. Appl. Physiol. 63, 1816-21.

    PubMed  CAS  Google Scholar 

  • FOSTER, R. F., THOMPSON, J. M. & KAUFMAN, S. J. (1987) A laminin substrate promotes myogenesis in rat skeletal muscle culture: analysis of replication and development using anti-desmin and anti-BrdUrd monoclonal antibodies. Dev. Biol. 122, 11-20.

    Article  PubMed  CAS  Google Scholar 

  • GROUNDS, M. D. & McGEACHIE, J. K. (1989) A comparison of muscle precursor replication in crush-injured skeletal muscle of Swiss and BALBc mice. Cell Tissue Res. 255, 385-91.

    Article  PubMed  CAS  Google Scholar 

  • GULATI, A. K. (1985) Basement membrane component changes in skeletal muscle transplants undergoing regeneration or rejection. J. Cell Biochem. 27, 337-46.

    Article  PubMed  CAS  Google Scholar 

  • HOLTZER, H., DILLULO, C., COSTA, M., LU, M., CHOI, J., MERMELSTEIN, C., SCHULTHEISS, T. & HOLTZER, S. (1991) Striated myoblasts and multinucleated myotubes induced in non-muscle cells by MyoD are similar to normal in vivo and in vitro counterparts. In Frontiers in Muscle Research (edited by OZAWA, E., MASAKI, T. & NABESHIMA, Y.) pp. 187-207. New York: Elsevier Science.

    Google Scholar 

  • HUGHES, S. M. & BLAU, H. M. (1990) Migration of myoblasts across basal lamina during skeletal muscle development. Nature 345, 350-3.

    Article  PubMed  CAS  Google Scholar 

  • KAUFMAN, S. J. & FOSTER, R. F. (1988) Replicating myoblasts express a muscle-specific phenotype. Proc. Natl Acad. Sci. USA 90, 9606-10.

    Article  Google Scholar 

  • LABRECQUE, C., HUARD, J., DANSEREAU, G. & TREMBLAY, J. P. (1991) In vitro bromodeoxyuridine labeling of nuclei: application to myotube hybridization. J. Histochem. Cytochem. 39, 1421-6.

    PubMed  CAS  Google Scholar 

  • LAZARIDES, E. (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283, 249-56.

    Article  PubMed  CAS  Google Scholar 

  • LEFAUCHEUR, J. P. & SEBILLE, A. (1995) The cellular events of injured muscle regeneration depend on the nature of the injury. Neuromusc. Disorders 5, 501-9.

    Article  PubMed  CAS  Google Scholar 

  • LESCAUDRON, L., LI, Z., PAULIN, D. & FONTAINE-PERUS, J. (1993) Desmin-lacZ transgene, a marker of regenerating skeletal muscle. Neuromusc. Disorders 3, 419-22.

    Article  PubMed  CAS  Google Scholar 

  • LI, H., CHOUDHARY, S. K., MILNER, D. J., MUNIR, M. L., KUISK, I. R. & CAPETANAKI, Y. (1994) Inhibition of desmin expression blocks myoblast fusion and interferes with myogenic regulators myoD and myogenin. J. Cell Biol. 124, 827-41.

    Article  PubMed  CAS  Google Scholar 

  • LI, Z., MARCHAND, P., HUMBERT, J., BABINET, C. & PAULIN, D. (1993) Desmin sequence elements regulating skeletal muscle-specific expression in transgenic mice. Development 117, 947-59.

    PubMed  CAS  Google Scholar 

  • McGEACHIE, J. K. & GROUNDS, M. D. (1989) The onset of myogenesis in denervated mouse skeletal muscle regenerating after injury. Neuroscience 28, 509-14.

    Article  PubMed  CAS  Google Scholar 

  • McGEACHIE, J. K. & GROUNDS, M. D. (1995) Retarded myogenic cell replication in regenerating skeletal muscles of old mice: an autoradiographic study in young and old BALBc and SJL/J mice. Cell Tissue Res. 280, 277-82.

    PubMed  CAS  Google Scholar 

  • MOENS, P., PARTRIDGE, T. A., MORGAN, J. E., BECKERSBLEUKX, G. & MARECHAL, G. (1993) Regeneration after free muscle grafting in normal and dystrophic (mdx) mice. J. Neurol. Sci. 111, 209-13.

    Article  Google Scholar 

  • ÖCALAN, M., GOODMAN, S. L., KÜHL, U., HAUSCHKA, S. D. & VONDERMARK, K. (1988) Laminin alters cell shape and stimulates motility and proliferation of murine skeletal myoblasts. Dev. Biol. 125, 158-67.

    Article  PubMed  Google Scholar 

  • ROBERTS, P. & McGEACHIE, J. K. (1990) Endothelial cell activation during angiogenesis in freely transplanted skeletal muscles in mice and its relationship to the onset of myogenesis. J. Anat. 169, 197-207.

    PubMed  CAS  Google Scholar 

  • ROBERTS, P., McGEACHIE, J. K., GROUNDS, M. D. & SMITH, E. R. (1989) Initiation and duration of myogenic precursor cell replication in transplants of intact skeletal muscles: an autoradiographic study in mice. Anat. Rec. 224, 1-6.

    Article  PubMed  CAS  Google Scholar 

  • SANES, J. R., RUBINSTEIN, J. L. & NICOLAS, J. F. (1986) Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 5, 3133-42.

    PubMed  CAS  Google Scholar 

  • SATOH, A., LABRECQUE, C. & TREMBLAY, J. P. (1993) Utilization of fluorescent latex microspheres (FLMs) to follow the fate of transplanted myoblasts. J. Histochem. Cytochem. 41, 1579-82.

    PubMed  CAS  Google Scholar 

  • SCHULTZ, E. & JARYSZACK, D. L. (1985) Effects of skeletal muscle regeneration on proliferative potential of satellite cells. Mech. Ageing Dev. 30, 63-72.

    Article  PubMed  CAS  Google Scholar 

  • SCHULTZ, E. & LIPTON, B. H. (1982) Skeletal muscle satellite cells: Change in proliferation potential as a function of age. Mech. Ageing Dev. 20, 377-83.

    Article  PubMed  CAS  Google Scholar 

  • THORNELL, L. E., EDSTRÖM, L. & ERIKSSON, A. (1980) The distribution of intermediate filament protein (skeletin) in normal and diseased human muscle. J. Neurol. Sci. 17, 153-70.

    Article  Google Scholar 

  • TOKUYASU, K. T., DUTTON, A. H. & SINGER, S. J. (1983) Immunoelectron microscopic studies of desmin (skeletin) localization and intermediate filament organisation in chicken skeletal muscle. J. Cell Biol. 96, 1727-42.

    Article  PubMed  CAS  Google Scholar 

  • ULLMAN, M., ULLMAN, A., SOMMERLAND, H., SKOTTNER, A. & OLDFORS, A. (1990) Effects of growth hormone on muscle regeneration and IGF-1 concentration in old rats. Acta Physiol. Scand. 140, 521-5.

    Article  PubMed  CAS  Google Scholar 

  • VANDENBURGH, H. H., SHEFF, M. F. & ZACKS, S. I. (1985) Soluble age-related factors from skeletal muscle which influence muscle development. Exp. Cell Res. 153, 389-401.

    Article  Google Scholar 

  • VATER, R., CULLEN, M. J. & HARRIS, J. B. (1992) The fate of desmin and titin during the degeneration and regeneration of the soleus muscle of the rat. Acta Neuropathol. 84, 278-88.

    Article  PubMed  CAS  Google Scholar 

  • WEITZER, G., MILNER, D., KIM, J. U., BRADLEY, R. & CAPETANAKI, Y. (1995) Cytoskeletal control of myogenesis: a desmin null mutation blocks the myogenic pathways during embryonic stem cell differentiation. Dev. Biol. 172, 422-39.

    Article  PubMed  CAS  Google Scholar 

  • ZHANG, M. & McLENNAN, I. (1994) Use of antibodies to identify satellite cells with a light microscope. Muscle Nerve 17, 987-94.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lescaudron, L., Creuzet, S.E., Li, Z. et al. Desmin-lacZ transgene expression and regeneration within skeletal muscle transplants. J Muscle Res Cell Motil 18, 631–641 (1997). https://doi.org/10.1023/A:1018679722112

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018679722112

Keywords

Navigation