Skip to main content
Log in

Activation status of platelet aggregates and platelet microparticles shed in sheared whole blood

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The role of temperature and shear rate in the activation status of aggregating platelets and platelet microparticles (MPs) was investigated in a modified concentric-cylinder rotational viscometer. Whole blood anticoagulated with citrate was exposed to a range of shear rates typical of cardiopulmonary bypass circuits (0, 1000, 2000 and 4000 s-1) over four temperatures spanning hypothermic to mildly hyperthermic conditions (24, 30, 37 and 42°C) for short durations (100 s). Aliquots of blood were double-stained for CD41 (platelet GPIIb/IIIa) and CD62 (P-selectin). Platelets, platelet aggregates, MPs and red blood cell-platelet and -MP aggregates were identified by flow cytometry by acquiring only CD41-positive particles and differentiating on a plot of CD41 versus forward light scatter. The activation status of each particle was quantified by measuring CD62 expression (α-granule release). A degree of correlation between the shedding of MPs and the formation of platelet–platelet aggregates was observed for the data as a whole (r=0.85 for p<0.01), although this trend was not observed for a shear rate of 4000 s-1. The mean expression of CD62 on both platelets and MPs was maintained at a very low level for all temperature and shear rate combinations. There was, however, a number of very highly activated MPs associated with red blood cells at high shear rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. RIMM, N. Engl. J. Med. 312 (1985) 119.

    Google Scholar 

  2. G. W. ROACH, M. KANCHUGER, C. M. MANGANO, M. NEWMAN, N. NUSSMEIER, R. WOLMAN, A. AGGARWAL, K. MARSCHALL, S. H. GRAHAM, C. LEY, G. OZANNE and D. T. MANGANO, ibid. 335 (1996) 1857.

    Google Scholar 

  3. A. J. ACINAPURA, D. M. ROSE, J. R. CUNNINGHAM, I. J. JACOBOWITZ, M. D. KRAMER and Z. ZISBROD, Circulation 78 (1988) 1179.

    Google Scholar 

  4. C. J. LAMBERT, A. J. MARENGO-ROWE, J. E. LEVESON, R. H. GREEN, J. P. THIELE, G. F. GEISLER, M. ADAM and B. F. MITCHEL, Ann. Thorac. Surg. 28 (1979) 440.

    Google Scholar 

  5. L. HARKER, T. W. MALPASS, H. E. BRANSON, E. A. HESSEL and S.A. SLICHTER, Blood 56 (1980) 824.

    Google Scholar 

  6. A. S. KESTIN, C. R. VALERI, S. F. KHURI, J. LOSCALZO, P. A. ELLIS, H. MACGREGOR, V. BIRJINIUK, H. OUIMET, B. PASCHE, M. J. NELSON, S. E. BENOIT, L. J. RODINO, M. R. BARNARD and A. D. MICHELSON, ibid. 82 (1993) 107.

    Google Scholar 

  7. C. S. RINDER, J. P. MATHEW, H. M. RINDER, J. BONAN, K. A. AULT and B. R. SMITH, Anesthesiology 75 (1991) 563.

    Google Scholar 

  8. D. B. STAAB, V. J. SORENSEN, J. J. FATH, S. B. RAMAN, H. M. HORST and F. N. OBEID, J. Trauma 36 (1994) 634.

    Google Scholar 

  9. Y. MIYAZAKI, S. NOMURA, T. MIYAKE, H. KAGAWA, C. KITADA, H. TANIGUCHI, Y. KOMIYAMA, Y. FUJIMURA, Y. IKEDA and S. FUKUHARA, Blood 88 (1996) 3456.

    Google Scholar 

  10. S. NOMURA, H. NAGATA, M. SUZUKI, K. KONDO, S. OHGA, T. KAWAKATSU, H. KIDO, T. FUKUROI, K. YAMAGUCHI, K. IWATA, M. YANABU, T. SOGA, T. KOKAWA and K. YASUNAGA, Thromb. Res. 62 (1991) 429.

    Google Scholar 

  11. P. J. SIMS, E. M. FAIONI, T. WIEDMER and S. J. SHATTIL, J. Biol. Chem. 263 (1988) 18205.

    Google Scholar 

  12. T. WIEDMER, S. J. SHATTIL, M. CUNNINGHAM and P. J. SIMS, Biochemistry 29 (1990) 623.

    Google Scholar 

  13. S. E. WIEDMER, T. L. HALL, W. H. KANE, W. F. ROSSE and P. J. SIMS, Blood 82 (1993) 1192.

    Google Scholar 

  14. J. N. GEORGE, E. B. PICKETT, S. SAUCERMAN, R. P. MCEVER, T. J. KUNICKI, N. KIEFFER and P. J. NEWMAN, J. Clin. Invest. 78 (1986) 340.

    Google Scholar 

  15. J. DACHARY-PRIGENT, J. M. FREYSSINET, J. M. PASQUET, J. C. CARRON and A. T. NURDEN, Blood 81 (1993) 2554.

    Google Scholar 

  16. P. SILJANDER, O. CARPEN and R. LASSILA, ibid. 87 (1996) 4651.

    Google Scholar 

  17. W. JY, W. W. MAO, L. HORSTMAN, J. TAO and Y. S. AHN, Blood Cells Mol. Dis. 21 (1995) 217.

    Google Scholar 

  18. Y. IKEDA, M. HANDA, K. KAWANO, T. KAMATA, M. MURATA, Y. ARAKI, H. ANBO, Y. KAWAI, K. WATANABE, I. ITAGAKI, K. SAKAI and Z. M. RUGGERI, J. Clin. Invest. 87 (1991) 1234.

    Google Scholar 

  19. L. NEEDHAM and N. J. CUSACK, Eur. J. Pharmacol. 134 (1987) 9.

    Google Scholar 

  20. W. D. STAATZ, J. J. WALSH, T. PEXTON and S. A. SANTORO, J. Biol. Chem. 265 (1990) 4778.

    Google Scholar 

  21. T. K. VU, D. T. HUNG, V. I. WHEATON and S. R. COUGHLIN, Cell 64 (1991) 1057.

    Google Scholar 

  22. K. KONSTANTOPOULOS, K. K. WU, M. M. UDDEN, E. I. BANEZ, S. J. SHATTIL and J. D. HELLUMS, Biorheology 32 (1995) 73.

    Google Scholar 

  23. J. GOLANSKI, T. PIETRUCHA, Z. BAJ, J. GREGER and C. WATALA, Thromb. Res. 83 (1996) 199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RHODES, N.P., SHORTLAND, A.P., RATTRAY, A. et al. Activation status of platelet aggregates and platelet microparticles shed in sheared whole blood. Journal of Materials Science: Materials in Medicine 8, 747–751 (1997). https://doi.org/10.1023/A:1018556427716

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018556427716

Keywords

Navigation