Skip to main content
Log in

NMR analysis of carbohydrates with model-free spectral densities: the dispersion range revisited

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Over the past decade molecular mechanics and molecular dynamics studies have demonstrated considerable flexibility for carbohydrates. In order to interpret the corresponding NMR parameters, which correspond to a time-averaged or 'virtual' conformer, it is necessary to simulate the experimental data using the averaged geometrical representation obtained with molecular modelling methods. This structural information can be transformed into theoretical NMR data using empirical Karplus-type equations for the scalar coupling constants and the appropriate formalism for the relaxation parameters. In the case of relaxation data, the 'model-free' spectral densities have been widely used in order to account for the internal motions in sugars. Several studies have been conducted with truncated model-free spectral densities based on the assumption that internal motion is very fast with respect to overall tumbling.

In this report we present experimental and theoretical evidence that suggests that this approach is not justified. Indeed, recent results show that even in the case of moderate-sized carbohydrates internal motions are occurring on the same timescale as molecular reorientation. Simulations of relaxation parameters (NOESY volumes, proton cross-relaxation rates, carbon T1 and nOe values) in the dispersion range (0.1<Tc<5 ns) show that rates of internal motion can be fairly precisely defined with respect to overall tumbling. Experimental data for a variety of oligosaccharides clearly indicate similar timescales for internal and overall motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kessler H (1982) Angew Chem Int Ed Engl. 21: 51823.

    Google Scholar 

  2. (a) McCain DC, Markley JL (1986) J Am Chem Soc 108: 425964. (b) Mirau PA, Bovey FA (1986) J Am Chem Soc 108: 513034. (c) Davis DG (1987) J Am Chem Soc 109: 347172. (d) Simorre JP, Genest D (1990) Magn Reson Chem 28: 214. (e) Goldman M, Desvaux H (1992) C R Acad Sci Ser II 317: 74956. (f) Hricovini M, Carver JP (1992) Biochemistry 31: 1001823. (g) Braccini I, Michon V, Herve du Penhoat C, Imberty A, Perez S (1993) Int J Biol Macromol 15: 515.

    Article  CAS  Google Scholar 

  3. Lane A (1993) Prog NMR Spectroscopy, 25: 481505.

    Article  CAS  Google Scholar 

  4. Rees DA, Scott WE (1971) J Chem Soc B 46979.

    Google Scholar 

  5. Bruschweiler R, Ernst RR (1992) J Chem Phys 96: 175866.

    Article  Google Scholar 

  6. Kowalewski J, Widmalm G (1994) J Phys Chem 98: 2834.

    Article  CAS  Google Scholar 

  7. Engelsen SB, Perez S, Braccini I, Herve du Penhoat C (1995) J Comput Chem 16: 1096119.

    Article  CAS  Google Scholar 

  8. Jullien L, Canceill J, Lacombe L, Lehn JM (1994) J Chem Soc Perkin Trans 2: 9891002.

    Google Scholar 

  9. Meyer C, Perez S, Herve du Penhoat C, Michon V (1993) J Am Chem Soc 115: 1030010.

    Article  CAS  Google Scholar 

  10. Boudot D, Canet D, Brondeau J, Boubo JC (1989) J Magn Reson 83: 42839.

    CAS  Google Scholar 

  11. Craik DJ, Kumar A, Levy GC (1983) J Chem Inf Comput Sci 23: 308.

    Article  CAS  Google Scholar 

  12. Bouchemal-Chibani N, Braccini I, Derouet C, Herve du Penhoat C, Michon V (1995) Int J Biol Macromol 17: 17782.

    Article  PubMed  CAS  Google Scholar 

  13. Engelsen SB, Herve du Penhoat C, Perez S (1995) J Phys Chem 99: 1333451.

    Article  CAS  Google Scholar 

  14. Koning TMG, Boelens R, van der Marel GA, van Boom JH, Kaptein R (1991) Biochemistry 30: 378797.

    Article  PubMed  CAS  Google Scholar 

  15. Ejchart A, Dabrowsky J (1992) Magn Reson Chem 30: 51155124.

    Google Scholar 

  16. Kovacs H, Bagley S, Kowalewski J (1989) J Magn Reson 85: 53041.

    CAS  Google Scholar 

  17. Boher PN, Laplante SR, Kumar A, Zanatta N, Martin A, Hakkinen A, Levy GC (1994) Biochemistry 33: 244150.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catoire, L., Braccini, I., Bouchemal-Chibani, N. et al. NMR analysis of carbohydrates with model-free spectral densities: the dispersion range revisited. Glycoconj J 14, 935–943 (1997). https://doi.org/10.1023/A:1018518928122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018518928122

Navigation