Skip to main content
Log in

Influence of test protocol in determining the blood response to model polymers

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A multi-parametric, multi-center evaluation of three polymers was performed measuring their response to blood contact. The purpose of this study was to pinpoint differences in tests performed for assessing “basic” hemocompatibility on identical materials at different centers and attempt to rationalize. Assays for platelet adhesion, activation, aggregability and activation of the coagulation system in addition to an ex vivo patency assay were performed at four centers across Europe, using protocols favored by each center for determining the blood-contacting performance of a biomaterial. Three polymers were chosen for their expected blood response spanning the range of undesirable to desirable: ethylenevinylacetate (EVA), polyvinylchloride (PVC) and PVC modified with polyethylene oxide (PEO). The assays were ranked in terms of their efficacy compared to cost and simplicity. A correlation between assays was calculated, indicating the ability of one test to correctly determine the blood response compared to another. Some assays were unable to distinguish between materials, but of the assays which could, the materials were ranked in the following order: EVA; PVC; PVC-PEO, EVA producing the most undesirable response. It is concluded that many commonly used assays for determining hemocompatibility are inappropriate, but there are simple and reliable test methods available which correlate well with the more sophisticated protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Dawids, “Test Procedures for the Blood Compatibility of Biomaterials”, edited by S. Dawids (Kluwer Academic Publishers, Dordrecht, 1993).

    Google Scholar 

  2. S. Dawids and A. Bantjes, “Blood Compatible Materials and their Testing”, edited by S. Dawids and A. Bantjes (Martinus Nijhoff Publishers, Dordrecht, 1986).

    Google Scholar 

  3. C. J. Kirkpatrick, Med. Dev. Tech. 1(5) (1998) 38.

    Google Scholar 

  4. D. F. Williams, “Techniques of biocompatibility testing”, edited by D. F. Williams (Boca Raton, Florida, CRC Press, 1986).

    Google Scholar 

  5. C. Baquey, B. Dupuy, G. Janvier, L. Bordenave, J. Caix and B. Basse-Cathalinat, Biorheology 28(5) (1991) 463.

    Google Scholar 

  6. J. Black, “Biological performance of materials: fundamentals of biocompatibility”, edited by J. Black (M. Dekker, New York, 1981).

    Google Scholar 

  7. D. F. Williams, “Biocompatibility of clinical implant materials”, edited by D. F. Williams (Boca Raton, Florida, CRC Press, 1981).

    Google Scholar 

  8. E. W. Salzman, Blood 38(4) (1971) 509.

    Google Scholar 

  9. Y. Nose, Artif. Organs 15(1) (1991) 1.

    Google Scholar 

  10. H. Klinkmann, Contrib Nephrol. (1984).

  11. D. Hill, Mater. Dev. Tech. Jan.–Feb. (1995) 14.

  12. J. M. Courtney, N. M. K. Lamba, S. Sundaram and C. D. Forbes, Biomaterials 15(10) (1994) 737.

    Google Scholar 

  13. J. M. Anderson, J. Lab. Clin. Med. 110(6) (1987) 666.

    Google Scholar 

  14. V. I. Sevastianov, E. A. Tseytina, A. V. Volkov and V. I. Shumakov, Trans. Am. Soc. Artif. Intern. Organs 30 (1984) 137.

    Google Scholar 

  15. J. L. Brash in “Modern Aspects of Protein Adsorption on Biomaterials” (Kluwer Academic Publishers, Dordrecht, 1991) p. 39.

    Google Scholar 

  16. Y. F. Missirlis and J. L. Wautier, “The Role of Platelets in Blood-Biomaterial Interactions”, edited by Y. F. Missirlis and J. L. Wautier (Kluwer Academic Publishers, Dordrecht, 1993).

    Google Scholar 

  17. J. A. Davies, in “Blood-Surface Interaction: Biological Principles Underlying Haemocompatibility with Artificial Materials” (Elsevier Science Publishers, Amsterdam, 1986).

    Google Scholar 

  18. P. Didisheim, M. K. Dewanjee, C. S. Frisk, M. P. Kaye and D. N. Fass, in “Contemporary Biomaterials” (Noyes Publications, Park Ridge, 1984) p. 132.

    Google Scholar 

  19. S. L. Cooper, D. J. Fabrizius and T. G. Grasel, in “Blood in contact with natural and artificial surfaces” (Ann. N.Y. Acad. Sciences, 516, 1987) p. 572.

  20. M. K. Dewanjee, in “Blood in contact with natural and artificial surfaces” (Ann N.Y. Acad. Sciences, 516, 1987) p. 541.

  21. H. L. Goldsmith and V. T. Turitto, Thromb. Haemost. 55 (1986) 415.

    Google Scholar 

  22. S. M. Slack and V. T. Turitto, Thromb. Haemost. 72(5) (1994) 777.

    Google Scholar 

  23. COMMITTEE DRAFT ISO 10993-4, 1999 Biological evaluation of medical devices-Part 4: Selection of tests for interactions with blood.

  24. NIH Guidelines for blood/material interactions Publication No. 85-2185, 1985.

  25. S. J. Northup, Intern. J. Toxicology 18(4) (1999) 275.

    Google Scholar 

  26. M. J. Buchanan, P. J. Upman and R. F. Wallin, Med. Dev. & Diagn. Ind. Mag. (Nov. 1998).

  27. J. N. Mulvihill, A. Poot, T. Beugeling, A. Bantjes, W. G. Van Aken and J. P. Cazenave, in “Test Procedures for the Blood Compatibility of Biomaterials” (Kluwer Academic Publishers, Dordrecht, 1993) p. 377

    Google Scholar 

  28. N. P. Rhodes, T. V. Kumary and D. F. Williams, Biomaterials 17(20) (1996) 1995.

    Google Scholar 

  29. Y. F. Missirlis and G. P. A. Michanetzis, in “The Reference Materials of the European Communities” (Kluwer Academic Publishers, Dordrecht, 1992) p. 157.

    Google Scholar 

  30. G. P. A. Michanetzis and Y. F. Missirlis, J. Mater. Sci. Mater. in Med. 7(1) (1996) 29.

    Google Scholar 

  31. T. Schulze, W. Lemm and E. S. Bucherl, Life Support Syst. 1 (1983) 231.

    Google Scholar 

  32. W. Lemm, in “The Reference Materials of the European Communities” (Kluwer Academic Publishers, Dordrecht, 1992) p. 173.

    Google Scholar 

  33. M. C. Rissoan, R. Eloy and J. Baguet, in “Test Procedures for the Blood Compatibility of Biomaterials” (Kluwer Academic Publishers, Dordrecht, 1993) p. 461.

    Google Scholar 

  34. B. Dudley, J. L. Williams, K. Able and B. Muller, Trans. Amer. Soc. Artif. Int. Organs XXII (1976) 538.

    Google Scholar 

  35. K. S. Sakariassen, P. A. Bolhuis and J. J. Sixma, Thromb. Res. 19 (1980) 547.

    Google Scholar 

  36. K. L. Kaplan and J. Owen, Blood 57 (1981) 199.

    Google Scholar 

  37. R. P. McEver and M. N. Martin, J. Biol. Chem. 259 (1984) 9799.

    Google Scholar 

  38. J. P. Cazenave, J. N. Mulvihill, A. Sutter-Bay, C. Gachet, F. Tob and A. Beretz, in “Tests Procedures for the Blood Compatibility of Biomaterials” (Kluwer Academic Publishers, Dordrecht, 1993) p. 359.

    Google Scholar 

  39. M. J. Galloway, B. A. McVerry and M. J. Mackie, Thromb. Res. 33 (1984) 229.

    Google Scholar 

  40. N. P. Rhodes and D. F. Williams, Biomaterials 15(1) (1994) 34.

    Google Scholar 

  41. V. Turitto, H. J. Weiss and H. R. Baumgartner, J. Rheol. 23 (1979) 735.

    Google Scholar 

  42. V. Turitto and H. R. Baumgartner, Trans. Am. Soc. Artif. Intern. Org. 21 (1975) 593.

    Google Scholar 

  43. J. M. Courtney, M. Travers, J. T. Douglas, G. D. O. Lowe, C. D. Forbes, M. Aslam and C. J. Ryan, in “Blood Compatible Materials and their Testing” (Martinus Nijhoff Publishers, Dordrecht, 1986) p. 135.

    Google Scholar 

  44. K. D. Nelson, R. Eisenbaumer, M. Pomerantz and R. C. Eberhart, ASAIO J. 42(5) (1996) 884.

    Google Scholar 

  45. J. H. Lee, H. B. Lee and J. D. Andrade, Prog. in Polym. Sci. 20(6) (1995) 1043.

    Google Scholar 

  46. D. K. Han, K. D. Park, G. H. Ryu, U. Y. Kim, M. G. Min and Y. H. Kim, J. Biomed. Mater. Res. 30(1) (1996) 23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. F. Missirlis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michanetzis, G.P.A., Missirlis, Y.F., Rhodes, N.P. et al. Influence of test protocol in determining the blood response to model polymers. Journal of Materials Science: Materials in Medicine 13, 757–765 (2002). https://doi.org/10.1023/A:1016166807299

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016166807299

Keywords

Navigation