Skip to main content
Log in

Dissolution Rate Studies from a Stationary Disk/Rotating Fluid System

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The dissolution rates for hydrocortisone alcohol and acetate were determined using a stationary disk/ rotating fluid system. The hydrocortisone was compressed in a tablet die, and the die placed in a vessel above a rotating magnetic bar. Dissolution rates were evaluated in aqueous media under conditions involving the following independent variables: solubility (C s), diffusion coefficient (D), viscosity (v), rotational speed (ω), and tablet radius (r). A design equation which relates dissolution rate (R) to these variables was formulated for the system R α C s D 2/3(v) −1/6(ω) 1/2( r)3/2 This design equation adequately represents the system, which is related to fluid mechanics and convective diffusion models. The fluid mechanics model assumes that the fluid ideally rotates as solid-body rotation and the momentum layer is initiated at the outside radius of the tablet die. The convective diffusion model is based on the formation of a diffusion layer at the outside radius of the dissolving surface and a predictable relationship between the momentum and the mass transport quantities of bulk viscosity and diffusion coefficient. This configuration, like the rotating disk in a stationary fluid, offers the attractive attribute of being useful to study drug release mechanisms for systems of pharmaceutical interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Dakkuri and A. C. Shah. Pharm. Technol. June:28–86 (1986).

  2. A. C. Shah, C. B. Poet, and J. F. Ochs. J. Pharm. Sci. 62:671–677 (1973).

    Article  CAS  PubMed  Google Scholar 

  3. K. G. Nelson and A. C. Shah. J. Pharm. Sci. 64:610–614 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. B. Vongvirat, S. Howard, J. Mauger, and L. Luzzi. Int. J. Pharm. 9:213–219 (1981).

    Article  Google Scholar 

  5. H. Schlichting. Boundary Layer Theory, 6th ed., McGraw-Hill, New York, 1968.

    Google Scholar 

  6. J. H. Wood, J. E. Syarto, and H. Letterman. J. Pharm. Sci. 54:1068 (1965).

    Article  CAS  PubMed  Google Scholar 

  7. G. Milosovich. J. Pharm. Sci. 53:484–487 (1964).

    Article  CAS  PubMed  Google Scholar 

  8. K. A. Smith and C. K. Colton. AICHE 18(5):949–958 (1972).

    Article  CAS  Google Scholar 

  9. K. A. Smith and C. K. Colton. AICHE 18(5):958–967 (1972).

    Article  Google Scholar 

  10. T. von Karman. Z. Angew Math. Mech. 1:244–247 (1921).

    Google Scholar 

  11. W. G. Cochran. Proc. Cambr. Phil. Soc. 30:365–375 (1934).

    Article  Google Scholar 

  12. V. Levich. Physicochemical Hydrodynamics, Prentice Hall, Englewood Cliffs, N.J., 1962.

    Google Scholar 

  13. M. H. Rogers and G. N. Lance. Q. J. Mech. Appl. Math. 17:319–330 (1964).

    Article  Google Scholar 

  14. P. Kabasakalian, E. Britt, and Y. Yudis. J. Pharm. Sci. 55:642 (1966).

    Article  CAS  PubMed  Google Scholar 

  15. R. J. Braun and E. L. Parrot. J. Pharm. Sci. 61:592–597 (1972).

    Article  CAS  PubMed  Google Scholar 

  16. N. C. Fawcett and R. Caton. J. Anal. Chem. 48:600–604 (1979).

    Article  Google Scholar 

  17. P. J. Stout, N. Khoury, J. Mauger, and S. Howard. J. Pharm. Sci. 75:65–67 (1986).

    Article  CAS  PubMed  Google Scholar 

  18. A. Paruta, B. Sciarrone, and N. Lordi. J. Pharm. Sci. 58:216–219 (1969).

    Article  CAS  PubMed  Google Scholar 

  19. K. G. Nelson and A. C. Shah. J. Pharm. Sci. 76:799–802 (1987).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoury, N., Mauger, J.W. & Howard, S. Dissolution Rate Studies from a Stationary Disk/Rotating Fluid System. Pharm Res 5, 495–500 (1988). https://doi.org/10.1023/A:1015965223891

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015965223891

Navigation