Skip to main content
Log in

Effect of Aliphatic Side-Chain Substituents on the Antimalarial Activity and on the Metabolism of Primaquine Studied Using Mitochondria and Microsome Preparations

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The substitution of two deuterium atoms on the α-carbon of the primaquine side chain was found to produce a sevenfold decrease in the rate of conversion of primaquine to carboxyprimaquine by enzymatic oxidative deamination, but the deuterium substitution was found to have no significant effect on the in vitro antimalarial activity or on in vitro hepatocyte toxicity. Placing a single methyl group on the α-carbon was found to produce only a slight decrease in the rate of oxidative deamination. Although metabolic attack occurred adjacent to either the aniline nitrogen or the aliphatic amine, metabolic attack occurred primarily adjacent to the more basic nitrogen at the l′-position, even when this position bore a methyl substituent. Primaquine, the α-dideutero analogue, and the α-methyl analogue were all found to have about the same in vitro antimalarial activity as determined in the liver hepatocyte assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. K. Baker, J. D. McChesney, and A. M. Clark. J. Chromatogr. 230:69–77 (1982).

    Google Scholar 

  2. A. M. Clark, J. K. Baker, and J. D. McChesney. J. Pharm. Sci. 73:502–506 (1984).

    Google Scholar 

  3. J. K. Baker, J. A. Bedford, A. M. Clark, and J. D. McChesney. Pharm. Res. 1:98–100 (1984).

    Google Scholar 

  4. G. W. Mihaly, S. A. Ward, G. Edwards, and A. M. Breckenridge. Br. J. Clin. Pharmacol. 17:441–446 (1984).

    Google Scholar 

  5. J. D. McChesney and S. Sarangan. J. Label. Comp. Radiopharm. 22:293–298 (1984).

    Google Scholar 

  6. M. E. Jung, W. A. Andrus, and P. L. Overstein. Tetrahedron Lett. 48:4175–4178 (1977).

    Google Scholar 

  7. J. A. Bulat and H. J. Liu Can. J. Chem. 54:3869–3871 (1976).

    Google Scholar 

  8. L. Haskelberg. J. Org. Chem. 12:434–438 (1947).

    Google Scholar 

  9. A. Brossi, P. Millet, I. Landau, M. E. Bembenek, and C. W. Abell. FEBS Lett. 214:291–294 (1987).

    Google Scholar 

  10. P. Jenner and B. Testa. Concepts in Drug Metabolism, Marcel Dekker, New York, 1980, Chap. 3.

    Google Scholar 

  11. J. D. Baty, D. A. P. Evans, and P. A. Robinson. Biomed. Mass Spectrosc. 2:304–307 (1976).

    Google Scholar 

  12. G. W. Parkhurst, M. V. Nora, R. W. Thomas, and P. E. Carson. J. Pharm. Sci. 73:1329–1331 (1984).

    Google Scholar 

  13. J. K. Baker, J. D. McChesney, and L. F. Jorge. Pharm. Res. 3:132–141 (1986).

    Google Scholar 

  14. R. Naef and D. Seeback. Leibigs Ann. Chem. 1983:1930–1936 (1983).

    Google Scholar 

  15. C. D. Hufford, J. D. McChesney, and J. K. Baker. J. Heterocycl. Chem. 20:273–275 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, J.K., Yarber, R.H., Nanayakkara, N.P.D. et al. Effect of Aliphatic Side-Chain Substituents on the Antimalarial Activity and on the Metabolism of Primaquine Studied Using Mitochondria and Microsome Preparations. Pharm Res 7, 91–95 (1990). https://doi.org/10.1023/A:1015899928897

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015899928897

Navigation