Skip to main content
Log in

Molecular Weight Changes in Polymer Erosion

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

We report a study of the effects of polymer molecular weight on the erosion of polyanhydride copolymer matrices composed of 1,3-bis (p-carboxyphenoxy)-propane (CPP) and sebacic acid (SA) in aqueous solution. The erosion profile characteristically displays an induction period during which the erosion rate is relatively slow. The length of this period depends on the initial molecular weight of the polymer. The induction period may be characterized as a time during which a rapid decrease in polymer molecular weight occurs, the end of this period correlating with the time required for the polymer molecular weight to decrease to below a value of approximately 5000 (MW).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. W. Leong, B. C. Brott, and R. Langer. Bioerodible polyanhydrides as drug-carrier matrices. I. Characterization, degradation and release characteristics. J. Biomed. Mat. Res. 19:941–955 (1985).

    Google Scholar 

  2. S. J. Holland, B. J. Tighe, and P. L. Gould. Polymers for biodegradable medical devices, part I. J. Control. Release 4:155–180 (1986).

    Google Scholar 

  3. F. G. Hutchinson and B. J. A. Furr. Drug carrier systems. In F. H. D. Roerdink and A. M. Kroon (eds.), Biodegradable Polymers for Controlled Release of Peptides and Proteins, John Wiley and Sons, Chichester, 1989, pp. 111–127.

    Google Scholar 

  4. R. Langer and M. Chasin. In R. Langer and M. Chasin (eds.), Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York, 1990, pp. 43–70.

    Google Scholar 

  5. J. P. Kitchell and D. L. Wise. Poly(lactic/glycolic acid) biodegradable drugpolymer matrix systems. Meth. Enzymol. 112 (Drug Enzyme Targeting, Pt. A):436–448 (1985).

    Google Scholar 

  6. M. Chasin, D. Lewis, and R. Langer. Polyanhydrides for controlled drug delivery. Biopharm. Manuf. 1:33–39 (1988).

    Google Scholar 

  7. K. W. Leong, P. D'Amore, M. Marletta, and R. Langer. Bioerodible polyanhydrides as drug-carrier matrices: II: Biocompatibility and chemical reactivity. J. Biomed. Mater. Res. 20:51–64 (1986).

    Google Scholar 

  8. M. Chasin, A. Domb, E. Ron, E. Mathiowitz, R. Langer, K. Leong, C. Laurencin, H. Brem, and S. Grossman. Polyanhydrides as drug delivery systems. In M. Chasin and R. Langer (eds.), Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York, 1990, pp. 43–69.

    Google Scholar 

  9. A. Domb and R. Langer. Solid-state and solution stability of polyesters and polyanhydrides. Macromolecules 22:2117 (1989).

    Google Scholar 

  10. H. G. Rosen, J. Chang, G. Wnek, R. Linhardt, and R. Langer. Bioerodible polyanhydrides for controlled drug delivery. Biomaterials 4:131–133 (1983).

    Google Scholar 

  11. K. Leong, J. Kost, E. Mathiowitz, and R. Langer. Polyanhydrides for the controlled release of bioactive agents. Biomaterials 7: 364–371 (1986).

    Google Scholar 

  12. A. D'Emanuele, J. Kost, J. Hill, and R. Langer. The investigation of the effects of ultrasound on degradable polyanhydride matrices. Macromolecules 25:511–515 (1992).

    Google Scholar 

  13. J. Tamada and R. S. Langer. Mechanism of the erosion of polyanhydride drug delivery systems. Proc. Int. Symp. Control. Rel. Bioact. Mater. 17, Controlled Release Society, Lincolnshire, IL, 1990, paper D305.

    Google Scholar 

  14. H. Fukuzaki, H. Yoshida, M. Asano, M. Kumakura, T. Mashimo, H. Yuasa, K. Imai, and H. Yamanaka. In vivo characteristics of low-molecular-weight copoly(L-lactic acid/DL-hydroxyisocaproic acid) with parabolic-type and s-type degradation patterns. Makromol. Chem. 191:731–736 (1990).

    Google Scholar 

  15. Y. Doi, Y. Kanesawa, M. Kunioka, and T. Saito. Biodegradation of microbial copolyesters: Poly(3-hydroxybutyrate-CO-3-hydroxyvalerate) and poly(3-hydroxybutyrate-CO-4-hydroxybutyrate). Macromolecules 23:26–31 (1990).

    Google Scholar 

  16. S. J. Holland, A. M. Jolly, M. Yasin, and B. J. Tighe. Polymers for biodegradable medical devices, Part II. Biomaterials 8:289–295 (1987).

    Google Scholar 

  17. S. J. Holland, M. Yasin, and B. J. Tighe. Polymers for biodegradable medical devices, Part VII. Biomaterials 11:206–215 (1990).

    Google Scholar 

  18. H. T. Wang, H. Palmer, R. J. Linhardt, D. R. Flanagan, and E. Schmitt. Degradation of poly(ester) microspheres. Biomaterials 11:679–685 (1990).

    Google Scholar 

  19. C. G. Pitt. Poly-ε-caprolactone and its copolymers. In M. Chasin and R. Langer (eds.), Biodegradable Polymers as Drug Delivery Systems, Marcel Dekker, New York, 1990, pp. 71–120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Emanuele, A., Hill, J., Tamada, J.A. et al. Molecular Weight Changes in Polymer Erosion. Pharm Res 9, 1279–1283 (1992). https://doi.org/10.1023/A:1015801216466

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015801216466

Navigation