Skip to main content
Log in

Synthesis of the Enantiomers of Reduced Haloperidol

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Reduced haloperidol (RHAL) is the best known metabolite of haloperidol (HAL), having been identified in humans, rats, and guinea pigs. Since RHAL contains an asymmetric center, it can exist in two possible enantiomeric forms. However, the enantiomeric composition of the RHAL formed from HAL in vivo has never been reported. As a first step toward the enantiomeric analysis of biological samples, we have developed an efficient and stereospecific synthesis of (+)- and (–)-RHAL from readily available commercial materials. We have also identified an enantioselective chromatographic method using a chiral HPLC stationary phase which can detect as little as 1% of either enantiomer in synthetic samples of RHAL enantiomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Forsman, G. Folsch, M. Larsson, and R. Ohman. On the metabolism of haloperidol in man. Curr. Ther. Res. 21:606–617 (1977).

    Google Scholar 

  2. W. D. Bowen, E. L. Moses, P. J. Tolentino, and J. M. Walker. Metabolites of haloperidol display preferential activity at sigma receptors compared to dopamine D-2 receptors. Eur. J. Pharmacol. 177:111–118 (1990).

    Google Scholar 

  3. A. Forsman and M. Larsson. Metabolism of haloperidol. Curr. Ther. Res. 24:567–568 (1978).

    Google Scholar 

  4. B. E. Pape. Isolation and identification of a metabolite of haloperidol. J. Anal. Toxicol. 5:113–117 (1981).

    Google Scholar 

  5. E. R. Korpi, J. E. Kleinman, D. T. Costakos, M. Linnoila, and R. J. Wyatt. Reduced haloperidol in the post-mortem brains of haloperidol-treated patients. Psychiat. Res. 11:259–269 (1984).

    Google Scholar 

  6. E. R. Korpi and R. J. Wyatt. Reduced haloperidol: Effects on striatal dopamine metabolism and conversion to haloperidol in the rat. Psychopharmacology 83:34–37 (1984).

    Google Scholar 

  7. E. R. Korpi, D. T. Costakos, and R. J. Wyatt. Interconversion of haloperidol and reduced haloperidol in guinea pig and rat liver microsomes. Biochem. Pharmacol. 34:2923–2927 (1985).

    Google Scholar 

  8. B. S. Chakraborty, J. W. Hubbard, E. M. Hawes, G. McKay, J. K. Cooper, T. Gurnsey, E. D. Korchinski, and K. K. Midha. Interconversion between haloperidol and reduced haloperidol in healthy volunteers. Eur. J. Clin. Pharmacol. 37:45–48 (1989).

    Google Scholar 

  9. K. K. Midha, J. K. Cooper, E. M. Hawes, J. W. Hubbard, E. D. Korchinski, and G. McKay. An ultrasensitive method for the measurement of haloperidol and reduced haloperidol in plasma by high-performance liquid chromatography with coulometric detection. Ther. Drug Monit. 10:177–183 (1988).

    Google Scholar 

  10. M. Hariharan, E. K. Kindt, T. VanNoord, and R. Tandon. An improved sensitive assay for simultaneous determination of plasma haloperidol and reduced haloperidol levels by liquid chromatography using a coulometric detector. Ther. Drug Monit. 11:701–707 (1989).

    Google Scholar 

  11. L. Ereshefsky, C. M. Davis, C. A. Harrington, M. W. Jann, J. L. Browning, S. R. Saklad, and N. R. Burch. Haloperidol and reduced haloperidol plasma levels in selected schizophrenic patients. J. Clin. Psychopharmacol. 4:138–142 (1984).

    Google Scholar 

  12. S. R. Bareggi, M. Mauri, R. Cavallaro, M. G. Regazzetti, and A. R. Moro. Factors affecting the clinical response to haloperidol therapy in schizophrenia. Clin. Neuropharmacol. 13:S29–S34 (1990).

    Google Scholar 

  13. W. H. Chang, T. Y. Chen, C. F. Lee, W. H. Hu, and E. K. Yeh. Low plasma reduced haloperidol/haloperidol ratios in Chinese patients. Biol. Psychiatry 22:1406–1408 (1987).

    Google Scholar 

  14. A. Weil, J. Caldwell, J.-P. Guichard, and G. Picot. Species differences in the chirality of the carbonyl reduction on [14C]fenofibrate in laboratory animals and humans. Chirality 1:197–201 (1989).

    Google Scholar 

  15. S. Barany, A. Ingvast, and L. M. Gunne. Development of acute dystonia and tardive dyskinesia in Cebus monkeys. Res. Commun. Chem. Pathol. Pharmacol. 25:269–279 (1979).

    Google Scholar 

  16. T. G. Heffner, D. A. Downs, L. T. Meltzer, J. N. Wiley, and A. E. Williams. CI-943, a potential antipsychotic agent. I. Preclinical behavioral effects. J. Pharmacol. Exp. Ther. 251:105–112 (1989).

    Google Scholar 

  17. J. Chandrasekharan, P. V. Ramachandran, and H. C. Brown. Diisopinocampheylchloroborane, a remarkably efficient chiral reducing agent for aromatic prochiral ketones. J. Org. Chem. 50:5446–5448 (1985).

    Google Scholar 

  18. M. Srebnik, P. V. Ramachandran, and H. C. Brown. Chiral synthesis via organoboranes. 18. Selective reductions. 43. Diisopinocampheylchloroborane as an excellent chiral reducing reagent for the synthesis of haloalcohols of high enantiomeric purity. A highly enantioselective synthesis of both optical isomers of tomoxetine, fluoxetine, and nisoxetine. J. Org. Chem. 53:2916–2920 (1988).

    Google Scholar 

  19. S. Yamaguchi and K. Kabuto. Effects of neighboring functional groups in the asymmetric reduction of ω-substituted alkyl phenyl ketones with lithium tri-1-menthoxyaluminum hydride. Bull. Chem. Soc. Jap. 50:3033–3038 (1977).

    Google Scholar 

  20. T. H. Chan and P. Pellon. Chiral organosilicon compounds in synthesis. Highly enantioselective synthesis of arylcarbinols. J. Am. Chem. Soc. 111:8737–8738 (1989).

    Google Scholar 

  21. H. Y. Aboul-Enein and M. R. Islam. Structural factors affecting chiral recognition and separation on cellulose based chiral stationary phases. J. Liq. Chromatogr. 13:485–492 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaen, J.C., Caprathe, B.W., Priebe, S. et al. Synthesis of the Enantiomers of Reduced Haloperidol. Pharm Res 8, 1002–1005 (1991). https://doi.org/10.1023/A:1015800923078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015800923078

Navigation