Skip to main content
Log in

Point Interactions: \(\mathcal{P}\mathcal{T}\)-Hermiticity and Reality of the Spectrum

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

General point interactions for the second derivative operator in one dimension are studied. In particular, \(\mathcal{P}\mathcal{T}\)-self-adjoint point interactions with the support at the origin and at points ±l are considered. The spectrum of such non-Hermitian operators is investigated and conditions when the spectrum is pure real are presented. The results are compared with those for standard self-adjoint point interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albeverio, S., D?browski, L. and Kurasov, P.: Symmetries of Schrödinger operators with point interactions, Lett. Math. Phys. 45 (1998), 33–47.

    Google Scholar 

  2. Albeverio, S., Fei, S. M. and Kurasov, P.: Gauge fields, point interactions and fewbody problems in one dimension, SFB256-Preprint No. 614, Rheinische Friedrich-Wilhelms-Universität-Bonn, September 1999.

  3. Albeverio, S., Fei, S. M. and Kurasov, P.: N-Body Problems with 'Spin'-Related Contact Interactions in One Dimensional, Rep. Math. Phys. 47 (2001), 157–165.

    Google Scholar 

  4. Albeverio, S., Gesztesy, F., Høegh-Krohn, R. and Holden, H.: Solvable Models in Quantum Mechanics, Springer, New York, 1988.

    Google Scholar 

  5. Albeverio, S. and Kurasov, P.: Singular perturbations of differential operators. In: Solvable Schrödinger type operators, London Math. Soc. Lecture Note Ser. 271, Cambridge Univ. Press, Cambridge, 2000.

    Google Scholar 

  6. Bender, C. M. and Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80 (1998), 5243–5246.

    Google Scholar 

  7. Bender, C. M., Boettcher, S., Jones, H. F. and Savage, V. M.: Complex square well-a new exactly solvable quantum mechanical model, J. Phys. A 32 (1999), 6771–6781.

    Google Scholar 

  8. Bender, C. M., Boettcher, S. and Meisinger, P. N.: PT-symmetric quantum mechanics, J. Math. Phys. 40 (1999), 2201–2229.

    Google Scholar 

  9. Bender, C. M., Cooper, F., Meisinger, P. N. and Savage, V. M.: Variational ansatz for PT-symmetric quantum mechanics, Phys. Lett. A 259 (1999), 224–231.

    Google Scholar 

  10. Bender, C. M. and Dunne, G. V.: Large-order perturbation theory for a non-Hermitian PT-symmetric Hamiltonian, J. Math. Phys. 40 (1999), 4616–4621.

    Google Scholar 

  11. Bender, C. M., Dunne, G. V. and Meisinger, P. N.: Complex periodic potentials with real band spectra, Phys. Lett. A 252 (1999), 272–276.

    Google Scholar 

  12. Boman, J. and Kurasov, P.: Finite rank singular perturbations and distributions with discontinuous test functions, Proc. Amer. Math. Soc. 126 (1998), 1673–1683.

    Google Scholar 

  13. Coutinho, F. A. B., Nogami, Y. and Lauro Tomio: Time-reversal aspect of the point interactions in one-dimensional quantum mechanics, J. Phys. A 32 (1999), L133–L136.

    Google Scholar 

  14. Demkov, Yu. N. and Ostrovsky, V. N.: Zero-range potentials and their applications in atomic physics, Plenum, New York, 1988.

    Google Scholar 

  15. Dorey, P., Dunning, C. and Tateo, R.: Supersymmetry and the spontaneous breakdown of PT-symmetry, J. Phys. A 34 (2001), L391–L400.

    Google Scholar 

  16. Dorey, P., Dunning, C. and Tateo, R.: Spectral equivalence, bethe ansatz, and reality properties in PT-symmetric quantum mechanics, J. Phys. A 34 (2001), 5679–5704.

    Google Scholar 

  17. Handy, C. R.: Generating converging eigenenergy bounds for the discrete states of the-ix 3 non-Hermitian potential, J. Phys. A 34 (2001), L271–L277.

    Google Scholar 

  18. Handy, C. R., Khan, D., Xiao-Qian Wang, and Tymczak, C. J.: Mutiscale reference function analysis of the PT-symmetry breaking solutions for the P 2 + iX 2 + i?X Hamiltonian, J. Phys. A 34 (2001), 5593–5602.

    Google Scholar 

  19. Kurasov, P.: Distribution theory for discontinuous test functions and differential operators with generalized coefficients, J. Math. Anal. Appl. 201 (1996), 297–323.

    Google Scholar 

  20. Kurasov, P.: Energy dependent boundary conditions and the few-body scattering problem, Rev. Math. Phys. 9 (1997), 853–906.

    Google Scholar 

  21. Lévai, G. and Znojil, M.: Systematic search for PT-symmetric potentials with real energy spectra, J. Phys. A 33 (2000), 7165–7180.

    Google Scholar 

  22. Naboko, S. N.: Functional model of perturbation theory and its applications to scattering theory (Russian) In: BoundaryValue Problems of Math. Phys. 10. Trudy Mat. Inst. Steklov. 147 (1980), 86–114.

    Google Scholar 

  23. Naboko, S. N.: Conditions for the existence of wave operators in the nonselfadjoint case (Russian) In: Wave Propagation. Scattering Theory (Russian), Probl. Mat. Fiz. 12, Leningrad. Univ., Leningrad, 1987, pp. 132–155.

    Google Scholar 

  24. Pavlov, B.: On a non-selfadjoint Schrödinger operator (in Russian), Prob. Math. Phys. I (1966), 102–132.

    Google Scholar 

  25. Pavlov, B. S.: Dilation theory and spectral analysis of nonselfadjoint differential operators (Russian), In: Mathematical Programming and Related Questions, (Proc. Seventh Winter School, Drogobych, 1974), Theory of Operators in Linear Spaces (Russian), Central. Ekonom. Mat. Inst. Akad. Nauk SSSR, Moscow, 1976, pp. 3–69.

  26. Šeba, P.: The generalized point interaction in one dimension, Czech. J. Phys. B 36 (1986), 667–673.

    Google Scholar 

  27. Znojil, M.: Non-Hermitian matrix description of the PT-symmetric anharmonic oscillators, J. Phys. A 32 (1999), 7419–7428.

    Google Scholar 

  28. Znojil, M.: Exact solution for Morse oscillator in PT-symmetric quantum mechanics, Phys. Lett. A 264 (1999), 108–111.

    Google Scholar 

  29. Znojil, M.: PT-symmetric harmonic oscillators, Phys. Lett. A 259 (1999), 220–223.

    Google Scholar 

  30. Znojil, M.: Spiked and PT-symmetrized decadic potentials supporting elementary N-plets of bound states, J. Phys. A 33 (2000), 6825–6833.

    Google Scholar 

  31. Znojil, M.: PT-symmetrically regularized Eckart, Pöschl-Teller and Hulthén potentials, J. Phys. A 33 (2000), 4561–4572.

    Google Scholar 

  32. Znojil, M., Cannata, F., Bagchi, B. and Roychoudhury, R. Supersymmetry without Hermiticity within PT symmetric quantum mechanics, Phys. Lett. B 483 (2000), 284–289.

    Google Scholar 

  33. Znojil, M. and Lávai, G.: The Coulomb-harmonic oscillator correspondence in PT symmetric quantum mechanics, Phys. Lett. A 271 (2000), 327–333.

    Google Scholar 

  34. Znojil, M. and Tater, M.: Complex Calogero model with real energies, J. Phys. A 34 (2001), 1793–1803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albeverio, S., Fei, SM. & Kurasov, P. Point Interactions: \(\mathcal{P}\mathcal{T}\)-Hermiticity and Reality of the Spectrum. Letters in Mathematical Physics 59, 227–242 (2002). https://doi.org/10.1023/A:1015559117837

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015559117837

Navigation