Skip to main content
Log in

Polymers and Gels as Molecular Recognition Agents

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Synthetic polymers and gels capable of molecular recognition are very useful in designing novel intelligent biomaterials. In this article we review the recent progress in both theoretical and experimental studies toward making heteropolymers and gels with biomimetic properties, specifically in relation to protein recognition. Knowledge obtained from protein-folding studies sheds much light on our understanding of the heteropolymer behavior. Consequently, it is possible to design synthetic heteropolymers with specific structure that can fold into unique conformations, form receptor-like cavities and recognize specific target molecules. Recent studies towards simplifying the requirement for the heteropolymer structures and the polymerization procedures are reviewed. Intelligent polymer gels can be designed with new and interesting characteristics of molecular imprinting. The results are encouraging for further investigation and design of synthetic gels with programmable collapsed structure might be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. A. Peppas and R. Langer. New Challenges in Biomaterials. Science 263:1715–1720 (1994).

    Google Scholar 

  2. K. E. Healy. Molecular Engineering of Materials for Bioreactivity. Curr.Opin.Solid Sate Mater.Sci. 4:381–387 (1999).

    Google Scholar 

  3. P. Ball. Designing the Molecular World, Princeton University Press, Princeton, New Jersey, 1995.

    Google Scholar 

  4. A. S. Hoffman. Molecular Bioengineering of Biomaterials in the 1990s and Beyond: A Growing Liaison of Polymers with Molecular Biology. Artif.Organs 16:43–49 (1992).

    Google Scholar 

  5. P. Bures, Y. Huang, E. Oral, and N. A. Peppas. Surface Modifications andMolecular Imprinting of Polymers in Meidcal and Pharmaceutical Applications. J.Control.Release 72:25–33 (2001).

    Google Scholar 

  6. C. A. Mirkin, R. L. Letstinger, R. C. Mucic, and J. J. Storhoff. A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials. Nature 382:607–609 (1996).

    Google Scholar 

  7. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Guntherodt, Ch. Gerber, and J. K. Gimzewski. Translating Biomolecular Recognition into Nanomechanics. Science 288:316–318 (2000).

    Google Scholar 

  8. B. D. Ratner. New Ideas in Biomaterials Science-A Path to Engineered Biomaterials. J.Biomed.Mater.Res. 27:837–850 (1993).

    Google Scholar 

  9. B. D. Ratner. The Engineering of Biomaterials Exhibiting Recognition and Specificity. J.Molec.Recognition 9:617–625 (1996).

    Google Scholar 

  10. T. Miyata, N. Asami, and T. Uragami. A Reversibly Antigen-Responsive Hydrogel. Nature 399:766–769 (1999).

    Google Scholar 

  11. S. Nagahara and T. Matsuda. Hydrogel Formation via Hybridization of Oligonucleotides Derivatized in Water-Soluble Vinyl Polymers. Polymer Gels Networks 4:111–127 (1996).

    Google Scholar 

  12. P. J. Flory. Statistical Mechanics of Chain Molecules, Interscience Publishers, New York, 1969.

    Google Scholar 

  13. P. G. De Gennes. Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, New York, 1979

    Google Scholar 

  14. M. Doi and S. F. Edwards. The Theory of Polymer Dynamics, Clarendon Press, Oxford, United Kingdom, 1986.

    Google Scholar 

  15. B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons (eds.), Biomaterials Science. Academic Press, San Diego, California 1996.

    Google Scholar 

  16. C. D. Sfatos and E. I. Shakhnovich. Statistical Mechanics of Random Heteropolymers. Phys.Rep. 288:77–108 (1997).

    Google Scholar 

  17. K. A. Dill. Polymer Principles and Protein Folding. Protein Sci. 8:1166–1180 (1999).

    Google Scholar 

  18. V. S. Pande, A. Yu. Grosberg, and T. Tanaka. Heteropolymer Freezing and Design; Towards Physical Models of Protein Folding. Rev.Mod.Phys. 72:259–313 (2000).

    Google Scholar 

  19. A. K. Charkraborty. Disordered Heteropolymers: Models for Biomimetic Polymers and Polymers with Frustrating Quenched Disorder. Phys.Rep. 342:1–61 (2001).

    Google Scholar 

  20. J. A. Hubbell. Bioactive Biomaterials. Curr.Opin.Biotech. 10: 123–129 (1999).

    Google Scholar 

  21. A. S. Hoffman, et al. Really Smart Bioconjugates of Smart Polymers and Receptor Proteins. J.Biomed.Mater.Res. 52:577–586 (2000).

    Google Scholar 

  22. E. Kokufuta, Y.-Q. Zhang, and T. Tanaka. Saccharide-Sensitive Phase Transition of Lectin-Loaded Gel. Nature 351:302–304 (1991).

    Google Scholar 

  23. Y. Baba, M. Tsuhako, T. Saqa, M. Akashi, and E. Yashima. Specific Base Recognition of Oligodeoxynucleotides by Capillary Affinity Gel Electrophoresis Using Polyacrylamide-Poly(9-vinyladenine) Conjugated Gel. Anal.Chem. 64:1920–1925 (1992).

    Google Scholar 

  24. Z. Yang, A. Mesiano, S. Venkatasunramanian, S. H. Gross, J. M. Harris, and A. J. Russell. Activity and Stability of Enzymes Incorporated into Acrylic Polymers. J.Am.Chem.Soc. 117:4843–4850 (1995).

    Google Scholar 

  25. Z.-R. Lu, P. Kopecčkova, and J. Kopecě. Polymerizable Fab' Antibody Fragments for Targeting of Anticancer Drugs. Nature Biotech. 17:1101–1104 (1999).

    Google Scholar 

  26. V. Bulmus, Z. Ding, C. J. Long, P. S. Stayton, and A. S. Hoffman. Site-Specific Polymer-Streptavidin Bioconjugates for pHControlled Binding and Triggered Release of Biotin. Bioconjug.Chem. 11:78–83 (2000).

    Google Scholar 

  27. V. Bulmus, Z. Ding, C. J. Long, P. S. Stayton, and A. S. Hoffman. Site-Specific Polymer-Streptavidin Bioconjugates for pHControlled Binding and Triggered Release of Biotin. Bioconjug.Chem. 11:78–83 (2000).

    Google Scholar 

  28. G. Wulff. Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates-A way towards Artificial Antibodies. Angew.Chem.Int.Ed. 34:1812–1832 (1995).

    Google Scholar 

  29. K. Mosbach, K. Haupt, X.-C. Liu, P. A. G. Cormack, and O. Ramstrom. Molecular Imprinting: Status Artis et Quo Vadere? In R. A. Bartsch and M. Maeda (eds.), Molecular and Ionic Recognition with Imprinted Polymers, American Chemical Society, Washington, DC, 1998 pp. 29–48.

    Google Scholar 

  30. B. Sellergren. Imprinted Polymers with Memory for Small Mol-ecules, Proteins, or Crystals. Angew.Chem.Int.Ed. 39:1031–1037 (2000).

    Google Scholar 

  31. I. A. Nicholls. Towards the Rational Design of Molecularly Imprinted Polymers. J.Molec.Recognition 11:79–82 (1998).

    Google Scholar 

  32. S. A. Piletsky, S. Alcock, and A. P. F. Turner. Molecular Imprinting: At the Edge of the Third Millennium. Trends Biotech. 19:9–12 (2001).

    Google Scholar 

  33. J. Steinke, D. C. Sherrington, and I. R. Dunkin. Imprinting of Synthetic Polymers Using Molecular Templates. Adv.Polym.Sci. 123:81–125 (1995).

    Google Scholar 

  34. H. Shi, W.-B. Tsai, M. D. Garrison, S. Ferrari, and B. D. Ratner. Template-Imprinted Nanostructured Surfaces for Protein Recognition. Nature 398:593–597 (1999).

    Google Scholar 

  35. B. D. Ratner and H. Shi. Recognition Templates for Biomaterials with Engineered Bioreactivity. Curr.Opin.Solid State Mater.Sci 4:395–402 (1999).

    Google Scholar 

  36. H. Frauenfenfelder, S. G. Sligar, and P. G. Wolynes. The Energy Landscapes and Motions of Proteins. Science 254:1598–1603 (1991).

    Google Scholar 

  37. R. Huber and W. S. Bennett, Jr. Functional Significance of Flexibility in Proteins. Biopolym. 22:261–279 (1983).

    Google Scholar 

  38. A. P. Demchenko. Recognition between Flexible Protein Molecules: Induced and Assisted Folding. J.Molec.Recognition 14: 42–61 (2001).

    Google Scholar 

  39. I. M. Papisov and A. A. Litmanovich. Molecular ‘Recognition’ in Interpolymer Interactions and Matrix Polymerization. Adv.Polym.Sci. 90:139–179 (1989).

    Google Scholar 

  40. J. Darnell, H. Lodish, and D. Baltimore. Molecular Cell Biology, Scientific American Books, New York, 1990.

    Google Scholar 

  41. D. Baker. A Surprising Simplicity to Protein Folding. Nature 405: 39–42 (2000).

    Google Scholar 

  42. K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas, and H. S. Chan. Principles of Protein Folding-A Perspective from Simple Exact Models. Protein Sci. 4:561–602 (1995).

    Google Scholar 

  43. K. Yue and K. A. Dill. Inverse Protein Folding Problem: Designing Polymer Sequences. Proc.Natl.Acad.Sci.USA 89:4163–4167 (1992).

    Google Scholar 

  44. M. W. Klemba, M. Munson, and L. Regan. De Novo Design of Protein Structure and Function. In R. H. Angeletti, (ed.), Proteins Analysis and Design, Academic Press, San Diego, California 1998.

    Google Scholar 

  45. W. F. DeGrado, C. M. Summa, V. Pavone, F. Nastri, and A. Lombardi. De Novo Design and Structural Characterization of Proteins and Metalloproteins. Annu.Rev.Biochem. 68:779–819 (1999).

    Google Scholar 

  46. J. G. Tirrell, M. J. Fournier, T. L. Maon, and D. A. Tirrell. Biomolecular Materials. Chem.Eng.News 72:40–51 (1994).

    Google Scholar 

  47. D. W. Urry. Five axioms for the functional design of peptidebased polymers as molecular machines and materials: Principle for macromolecular assemblies. Biopolymers 47:167–178 (1998).

    Google Scholar 

  48. V. S. Pande, A. Yu. Grosberg, and T. Tanaka. Statistical Mechanics of Simple Models of Protein Folding and Design. Biophys.J. 73:3192–3210 (1997).

    Google Scholar 

  49. E. I. Shakhonovich. Protein Design: A Perspective from Simple Tractable Models. Folding & Design 3:R45-R58 (1998).

    Google Scholar 

  50. P. G. De Gennes. Introduction to Polymer Dynamics, Cambridge University Press, Cambridge, United Kingdom, 1990.

    Google Scholar 

  51. A. E. Barron and R. N. Zuckermann. Bioinspired Polymeric Materials: In-between Proteins and Plastics. Curr.Opin.Chem.Biology 3:681–687 (1999).

    Google Scholar 

  52. K. Krishenbaum, R. N. Zuckermann, and K. A. Dill. Designing Polymers that Mimic Biomolecules. Curr.Opin.Struc.Biology 9:530–535 (1999).

    Google Scholar 

  53. M. M. Green, N. C. Peterson, T. Sato, A. Teramoto, R. Cook, and S. Lifson. A Helical Polymer with a Cooperative Response to Chiral Information. Science 268:1860–1866 (1995).

    Google Scholar 

  54. J. C. Nelson, J. G. Saveb, J. S. Moore, and P. G. Wolynes. Solvophobically Driven Folding of Nonbiological Oligomers. Science 277:1793–1796 (1997).

    Google Scholar 

  55. K. Hatada. Uniform Polymers. Prog.Polym.Sci. 24:1405–1408 (1999).

    Google Scholar 

  56. M. Jozefowicz and J. Jozefonvicz. Randomness and Biospecificty: Random Copolymers are Capable of Biospecific Molecular Recognition in Living Systems. Biomaterials 18:1633–1644 (1997).

    Google Scholar 

  57. J. D. Andrade. Needs, Problems, and Opportunities in Biomaterials and Biocompatibility. Clin.Mater. 11:19–23 (1992).

    Google Scholar 

  58. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of the Cell, Garland Publishing, New York, 1994.

    Google Scholar 

  59. P. G. De Gennes. Pattern Recognition by Flexible Coils. In G. Grinstein and G. Mazenko, (eds.), Directions in Condensed Matter Physics, World Scientific, Singapore, 1986 pp. 83–99.

    Google Scholar 

  60. G. Odian. Principles of Polymerization, McGraw-Hill, New York, 1970.

    Google Scholar 

  61. S. Srebnik, A. K. Charkraborty, and E. I. Shakhnovich. Adsorption-Freezing Transition for Random Heteropolymers near Disordered 2D Manifolds due to ‘Pattern Matching’. Phys.Rev.Lett. 77:3157–3160 (1996).

    Google Scholar 

  62. S. Srebnik, A. K. Charkraborty, and D. Bratko. Random Heteropolymer Adsorption on Disordered Multifunctional Surfaces: Effect of Specific Intersegment Interactions. J.Chem.Phys. 109: 6415–6419 (1998).

    Google Scholar 

  63. D. Bratko, A. K. Charkraborty, and E. I. Shakhnovich. Recognition between Random heteropolymers and Multifunctional Disordered Surfaces. Chem.Phys.Lett. 280:46–52 (1997).

    Google Scholar 

  64. D. Bratko, A. K. Charkraborty, and E. I. Shakhnovich. Adsorption of Random Copolymers on Disordered Surfaces. Comput.Theor.Polym.Sci. 8:113–126 (1998).

    Google Scholar 

  65. A. K. Chakraborty and A. J. Golumbfskie. Ann.Rev Phys Chem 52:537–586 (2001).

    Google Scholar 

  66. M. Muthukumar. Pattern Recognition by Polyelectrolytes. J.Chem.Phys. 103:4723–4731 (1995).

    Google Scholar 

  67. M. Muthukumar. Pattern Recognition in Self-Assembly. Curr.Opin.Colloid Interf.Sci. 3:48–54 (1998).

    Google Scholar 

  68. M. Muthukumar. Structure and Dynamics of Charged Macromolecules: Minimal Representation of Biologic Systems. Pramana-J.Phys. 53:171–197 (1999a).

    Google Scholar 

  69. M. Muthukumar, C. K. Ober, and E. L. Thomas. Competing Interactions and Levels of Ordering in Self-Organizing Polymeric Materials. Science 277:1225–1232 (1997).

    Google Scholar 

  70. A. J. Golumbfskie, V. J. Pande, and A. K. Charkraborty. Simulation of Biomimetic Recognition between Polymers and Surfaces. Proc.Natl.Acad.Sci.USA 96:11707–11712 (1999).

    Google Scholar 

  71. M. Muthukumar. Chain Entropy: Spoiler or Benefactor in Pattern Recognition? Proc.Natl.Acad.Sci.USA 96:11690–11692 (1999).

    Google Scholar 

  72. V. S. Pande, A. Yu. Grosberg, and T. Tanaka. Folding Thermodynamics and Kinetics of Imprinted Renaturable Heteropolymers. J.Chem.Phys. 101:8246–8257 (1994).

    Google Scholar 

  73. V. S. Pande, A. Yu. Grosberg, and T. Tanaka. Thermodynamic Procedure to Synthesize Heteropolymers that can Renature to Recognize a Given Target Molecule. Proc.Natl.Acad.Sci.USA 91:12976–12979 (1994).

    Google Scholar 

  74. V. S. Pande, A. Yu. Grosberg, and T. Tanaka. Phase Diagram of Heteropolymers with an Imprinted Conformation. Macromolecules 28:2218–2227 (1995).

    Google Scholar 

  75. V. S. Pande, A. Yu. Grosberg, and T. Tanaka. How to Create Polymers with Protein-like Capabilities: A Theoretical Suggestion. Physica D 107:316–321 (1997b).

    Google Scholar 

  76. C. H. Bamford. Template Polymerization. In R. N. Haward, (ed.), Developments in Polymerisation, 2, Applied Science Publishing, London, United Kingdom, 1979 pp.215–277.

    Google Scholar 

  77. N. A. Peppas. Hydrogels in Medicine and Pharmacy, CRC Press, Boca Raton, Florida, 1986.

    Google Scholar 

  78. T. Tanaka. Phase Transition of Gels. In R. S. Harland and R. K. Prud'homme (eds.), Polyelectrolyte Gels, American Chemical Society, Washington DC, 1992 pp. 1–21.

    Google Scholar 

  79. Y. Osada and K. Kajiwara. Gels Handbook, Academic Press, San Diego, California 2001.

    Google Scholar 

  80. N. A. Peppas, Y. Huang, M. Torres-Lugo, J. H. Ward, and J. Zhang. Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology. Annu.Rev.Biomed.Eng. 2:9–29 (2000).

    Google Scholar 

  81. A. Suzuki and T. Tanaka. Phase Transition in Polymer Gels Induced by Visible Light. Nature 346:345–347 (1990).

    Google Scholar 

  82. F. Ilmain, T. Tanaka, and E. Kokufuta. Volume Transition in a Gel Driven by Hydrogen Bonding. Nature 349:400–401 (1991).

    Google Scholar 

  83. R. Yoshida, K. Uchida, Y. Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, and T. Okano. Comb-Type Grafted Hydrogels with Rapid De-Swelling Response to Temperature Changes. Nature 374:240–242 (1995).

    Google Scholar 

  84. A. M. Lowman and N. A. Peppas. Hydrogels, In E. Mathiowitz (ed.), Encyclopedia of Controlled Drug Delivery, Wiley, New York, 1999 pp. 397–418.

    Google Scholar 

  85. M. Zrinyi. Intelligent Polymer Gels Controlled by Magnetic Fields. Colloid Polym.Sci. 278:98–103 (2000).

    Google Scholar 

  86. S. Juodkazis, N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo, and H. Misawa. Reversible Phase Transitions in Polymer Gels Induced by Radiation Forces. Nature 408:178–181 (2000).

    Google Scholar 

  87. Y.-Q. Zhang, T. Tanaka, and M. Shibayama. Super-Absorbency and Phase Transition of Gels in Physiological Salt Solutions. Nature 360:142–144 (1992).

    Google Scholar 

  88. T. Tanaka, I. Nishio, S.-T. Sun, and S. Ueno-Nishio. Collapse of Gels in an Electric Field. Science 218:467–469 (1982).

    Google Scholar 

  89. K. Y. Lee, M. C. Peters, K. W. Anderson, and D. J. Mooney. Controlled Growth Factor Release from Synthetic Extracellular Matrices. Nature 408:998–1000 (2000).

    Google Scholar 

  90. J. H. Holtz and S. A. Asher. Polymerized Colloidal Crystal Hydrogel Films as intelligent Chemical Sensing Materials. Nature 389:829–832 (1997).

    Google Scholar 

  91. M. Annaka and T. Tanaka. Multiple Phases of Polymer Gels. Nature 355:430–432 (1992).

    Google Scholar 

  92. M. Annaka, M. Tokita, T. Tanaka, S. Tanaka, and T. Nakahira. The Gel Memorizes Phases. J.Chem.Phys. 112:471–477 (2000).

    Google Scholar 

  93. T. Oya, T. Enoki, A. Yu. Grosberg, S. Masamune, T. Sakiyama, Y. Yakeoka, K. Tanaka, G. Wang, Y. Yilmaz, M. S. Feld, R. Dasari, and T. Tanaka. Reversible Molecular Adsorption Based on Multiple-Point Interaction by Shrinkable Gels. Science 286: 1543–1545 (1999).

    Google Scholar 

  94. T. Enoki, K. Tanaka, T. Watanabe, T. Oya, T. Sakiyama, Y. Takeoka, K. Ito, G. Wang, M. Annaka, K. Hara, R. Du, J. Chuang, K. Wasserman, A. Yu. Grosberg, S. Masamune, and T. Tanaka. Frustration in Polymer Conformation in Gels and their Minimization through Molecular Imprinting. Phys.Rev.Lett. 85: 5000–5003 (2000).

    Google Scholar 

  95. C. Alverez-Lorenzo, O. Guney, T. Oya, Y. Sakai, M. Kobayashi, T. Enoki, Y. Takeoka, T. Ishibashi, K. Kuroda, K. Tanaka, G. Wang, A. Yu. Grosberg, S. Masamune, and T. Tanaka. Polymer Gels that Memorize Elements of Molecular Conformation. Macromolecules 33:8693–8697 (2000).

    Google Scholar 

  96. C. Alverz-Lorenzo, O. Guney, T. Oya, Y. Sakai, M. Kobayashi, T. Enoki, Y. Takeoka, T. Ishibashi, K. Kuroda, K. Tanaka, G. Wang, A. Yu. Grosberg, S. Masamune, and T. Tanaka. Reversible Adsorption of Calcium Ions by Imprinted Temperature Sensitive Gels. J.Chem.Phys. 114:2812–2816 (2001).

    Google Scholar 

  97. M. Watanabe, T. Akahoshi, Y. Tabata, and D. Nakayama. Molecular Specific Swelling Changes of Hydrogels in Accordance with the Concentration of Guest Molecule. J.Am.Chem.Soc. 120:5577–5578 (1998).

    Google Scholar 

  98. N. Nagahori and S.-I. Nishimura. Tailored Glycopolymers: Controlling the Carbohydrate-Protein Interaction Based on Template Effect. Biomacromolecules 2:22–24 (2001).

    Google Scholar 

  99. M. E. Byrne, J. Z. Hilt, R. Bashir, K. Park, and N. A. Peppas. Biomimetic materials for selective recognition and microsensing of biologically significant molecules. Trans.Soc.Biomater 28:169 (2002)

    Google Scholar 

  100. M. E. Byrne, D. B. Henthorn, Y. Huang, and N. A. Peppas. Micropatterning biomimetic materials for bioadhesion and drug delivery. In A. K. Dillow and A. Lowman (eds.), Biomimetic Materials and Design: Interactive Biointerfacial Strategies, Tissue Engineering, and Targeted Drug Delivery, pp 443–470 Marcel Dekker, Inc., New York, 2002.

    Google Scholar 

  101. M. E. Byrne, K. Park, and N. A. Peppas. Non-Covalent Molecular Imprinting of Glucose: Recognition in Aqueous Media. In K. R. Brain and C. J. Alexander (eds.), Molecularly Imprinted Polymer Science and Technology, 111, STS Publishing, Cardiff, 2000.

    Google Scholar 

  102. M. Byrne, K. Park, and N. A. Peppas. “Recent Advances in Hydrogels for Molecular Imprinting”, Adv.Drug Deliv.Rev. 54:149–161 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Peppas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peppas, N.A., Huang, Y. Polymers and Gels as Molecular Recognition Agents. Pharm Res 19, 578–587 (2002). https://doi.org/10.1023/A:1015389609344

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015389609344

Navigation