Skip to main content
Log in

Metabolic Abnormalities in the Diabetic Heart

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Congestive heart failure is a major health problem in the diabetic. Diabetics have a high incidence of heart disease, including an increased incidence and severity of congestive heart failure than the non-diabetic. Progression to heart failure after an acute myocardial infarction is also more frequent in diabetics then non-diabetics. While atherosclerosis and ischemic injury are important contributing factors to this high in incidence of heart failure, another important factor is diabetes-induced changes within the heart itself. A prominent change that occurs in the diabetic is a switch in cardiac energy metabolism. Increases in fatty acid oxidation accompanied by decreases in glucose metabolism can result in the myocardium becoming almost entirely reliant on fatty acid oxidation as a source of energy. This switch in energy metabolism contributes to congestive heart failure by increasing the severity of injury following an acute myocardial infarction, and by having direct negative effects on contractile function. This paper will review the evidence linking alterations in energy metabolism to alterations in contractile function in the diabetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gotzsche O. Myocardial cell dysfunction in diabetes mellitus. Diabetes 1986;35:1158–1162.

    Google Scholar 

  2. Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schönekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochem Biophys Acta 1994;1213:263–276.

    Google Scholar 

  3. Lopaschuk GD. Alterations in myocardial fatty acid metabolism contribute to ischemic injury in the diabetic. Can J Cardiol 1989;5:315–320.

    Google Scholar 

  4. Fein FS, Sonnenblick. Diabetic cardiomyopathy. Progress in Cardiovascular Diseases 1985;4:255–270.

    Google Scholar 

  5. Tomlinson KC, Gardiner SM, Hebden RA, Bennett T. Functional consequences of streptozotocin-induced diabetes mellitus, with particular reference to the cardiovascular system. Pharmacologial Reviews 1992;44:103–150.

    Google Scholar 

  6. Borrow KM, Jaspan JB, Williams KA, Neumann A, Wolinski-Walley P, Lang RM. Myocardial mechanics in young adult patient with diabetes mellitus: effects of altered load, inotropic state and dynamic exercise. JACC 1990;15:1508–1517.

    Google Scholar 

  7. Hamby RI, Zoneraich, Sherman L. Diabetic cardiomyopathy. JAMA 1974;229:1749–1754.

    Google Scholar 

  8. Ledet T. Diabetic cardiomyopathy: quantitative histological studies of the heart from young juvenile diabetics. Acta Path Microbiol Scand 1976;84: 421–428.

    Google Scholar 

  9. Vered, Z, Battler A, Segal P, Liberman D, Yerushalmi Y, Berezin M, Meufeld H. Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (Diabetic cardiomyopathy. Am J Cardiol 1984;54:633–637.

    Google Scholar 

  10. Dillmann WH. Methyl palmoxirate increases Ca2+ myosin ATPase activity and changes myosin isoenzyme distribution in the diabetic rat heart. Am J Physiol 1985;248:E602-E605.

    Google Scholar 

  11. Dillmann WH. Myosin isoenzyme distribution and Ca2+ activated myosin ATPase activity in the rat heart influenced by fructose feeding and triiodothyronine. Endocrinology 1985;116:2160–2166.

    Google Scholar 

  12. Camps MA, Castello P, Munoz M, Monfar X, Testar M, Palacin A, Zorano A. Effect of diabetes and fasting on GLUT 4 (muscle/fat) glucose transporter expression in insulin sensitive tissues. Biochem J 1992;282: 765–772.

    Google Scholar 

  13. Heyliger CE, Rodrigues B, NcNeill JH. Effect of choline and methionine treatment on cardiac dysfunction of diabetic rats. Diabetes 1986;35:1152–1157.

    Google Scholar 

  14. Nicholl TA, Lopaschuk GD, McNeill JH. The effects of free fatty acids and dichloroacetate on the isolated working diabetic rat heart. Am J Physiol 1991; 261:H1053–H1059.

    Google Scholar 

  15. Wall SR, Lopaschuk GD. Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rat. Biochim Biophys Acta 1989;1006:97–103.

    Google Scholar 

  16. Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation 1979;59:8–13.

    Google Scholar 

  17. Bradley RF, Bryfogle JW. Survival of diabetic patients after myocardial infarction. Am J Med 1956;30:207–216.

    Google Scholar 

  18. Ulvenstam G, Aberg A, Bergstrand R, Johansson S, Pennert K, Vedin A, Wilhelmsen L, Wilhelmsson C. Long-term prognosis after myocardial infarction in men with diabetes. Diabetes 1985;34:787–792.

    Google Scholar 

  19. Stone PH, Muller JE, Hartwel T, York BJ, Rutherford JD, Parker CB, Turi ZG, Strauss HW, Willerson JT, Robertson T, Braunwald E, Jaffe AS. The effect of diabetes mellitus on prognosis and serial left ventricular function after acute myocardial infarction: contribution of both coronary disease and diastolic left ventricular dysfunction to the adverse prognosis. J Am Coll Cardiol 1989;14:49–57.

    Google Scholar 

  20. Solang L, Malmerg K, Ryden L. Diabetes mellitus and congestive heart failure. Further knowledge needed. Eur Heart J 1999;20:789–795.

    Google Scholar 

  21. Garland PB, Randle PJ. Regulation of glucose uptake by muscle. X. Effects of alloxan diabetes, starvation, hypophysectomy and adrenalectomy and of fatty acids, ketonebodies and pyruvate on the glycerol output and concentrations of free fatty acids, longchain fatty acyl coenzyme A, glycerol phosphate and citrate cycle intermediates in rat hearts and diaphragm muscles. Biochem J 1970;93:678.

    Google Scholar 

  22. Lopaschuk GD, Russell JC. Myocardial function and energy substrate metabolism in the insulin-resistant JCR:LA corpulent rat. J Appl Physiol 1991;71:1302–1308.

    Google Scholar 

  23. Factor SM, Minase T, Sonnenblick EH. Clinical and morphological factors of human hypertensive-diabetic cardiomyopathies. Am Heart J 1980;99:446–458.

    Google Scholar 

  24. Weber JR. Left ventricular hypertrophy: its prime importance as a controllable risk factor. Am H J 1988;116:272–279.

    Google Scholar 

  25. Paternostro G, pagano D, Gnecchi-Ruscone T, Bonser RS, Camici PG. Insulin resistance in patients with cardiac hypertrophy. Cardiovasc Res 1999;42:246–253.

    Google Scholar 

  26. Neely JR, Morgan HE. Relationship between carbohydrate metabolism and energy balance of heart muscle. Ann Rev Physiol 1974;36:413–459.

    Google Scholar 

  27. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 1991;266:8162–8170.

    Google Scholar 

  28. McGarry JD, Woeltje KF, Kuwajima M, Foster DW. Regulation of ketogenesis and the renaissance of carnitine palmitoyltransferase Diabetes 1989;5:271–284.

    Google Scholar 

  29. Saddik M, Gamble J, Witters LA, Lopaschuk GD. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem 1993;268:25836–25845.

    Google Scholar 

  30. Kim KH, Lopez-Casillas F, Bai DH, Luo X, Pape ME. Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. FASEB 1989;3:2250–2256.

    Google Scholar 

  31. Hardie DG, Corton J, Ching YP, Davies SP, Howley S. Regulation of lipid metabolism by the AMP-activated protein kinase. Biochem Soc Trans 1997;25:1229–1231.

    Google Scholar 

  32. Kudo N, Barr A, Barr R, Lopaschuk GD. 5'AMP-activated protein kinase inhibition of acetyl CoA carboxylase can explain the high rates of fatty acid oxidation in reperfused ischemic hearts. J Biol Chem 1995;270:17511–17520.

    Google Scholar 

  33. Kudo N, Gillespite JG, Kung L, Witters LA, Schulz R, Clanachan AS, Lopaschuk GD. Characterization of 5'AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochim Biophys Acta 1996;1301:67–75.

    Google Scholar 

  34. Dyck JRB, Kudo N, Barr AJ, Davies SP, Hardie DG, Lopaschuk GD. Phosphorylation control of cardiac acetyl CoA carboxylase by cAMP-dependent protein kinase and 5'-AMP activated protein kinase. Biochem J 1999;261:1–8.

    Google Scholar 

  35. Lopaschuk GD, Gamble J. Acetyl-CoA carboxylase: an important regulator of fatty acid oxidation in the heart. Can J Physiol Pharmacol 1994;72:1101–1109.

    Google Scholar 

  36. Gamble J, Lopaschuk GD. Insulin inhibition of 5' adenosine monophosphate-activated protein kinase in the heart results in activation of acetyl coenzyme A carboxylase and inhibition of fatty acid oxidation. Metabolism 1997;46:1270–1274.

    Google Scholar 

  37. Makinde A-O, Gamble J, Lopaschuk GD. Upregulation of 5'-AMP-activated protein kinase is responsible for the increase in myocardial fatty acid oxidation rate following birth in the newborn rabbit. Circ Res 1997;80:482–489.

    Google Scholar 

  38. Dyck JRB, Berthiaume LG, Thomas PD, Kantor PF, Barr AJ, Barr R, Singh D, Hopkins TA, Voilley N, Prentki M, Lopaschuk GD. Characterization of rat liver malonyl CoA decarboxylase and the study of its role in regulating fatty acid metabolism. Biochem J 2000;350:599–608.

    Google Scholar 

  39. Dyck JRB, Barr A, Barr R, Kolattukudy PE, Lopaschuk GD. Characterization of cardiac malonyl-CoA decarboxylase and its putative role in regulating fatty acid oxidation. Am J Physiol 1998;44:H2122–H2129.

    Google Scholar 

  40. Sakamoto J, Barr RL, Kavanagh KM, Lopaschuk GD. Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart. Am J Physiol 2000;278:H1196–H1204.

    Google Scholar 

  41. Lopaschuk GD. Abnormal mechanical function in diabetes: relationship to altered myocardial carbohydrate/ lipid metabolism. Coronary Artery Disease 1996;7:116–123.

    Google Scholar 

  42. Bellodi G, Manicardi V, Malavasi V, Veneri L, Bernini G, Bossini P, Distefano S, Magnanini G, Muratori L, Rossi G, Zuarini A. Hyperglycemia and prognosis of acute myocardial infarction in patients without diabetes mellitus. Am J Cardiol 1989;64;885–888.

    Google Scholar 

  43. Kesler I. Mortality experience in diabetic patients: a twenty-six year follow-up study. Am J Med 1971; 51:715–724.

    Google Scholar 

  44. Oswald B, Corcovan S, Yudkin JS. Prevalence and risks of hyperglycemia and undiagnosed diabetes in patients with acute myocardial infarction. Lancet 1984;1:1264–1267.

    Google Scholar 

  45. Oswald GA, Smith CCT, Betteridge DJ, Yudkin JS. Determinants and importance of stress hyperglycaemia in non-diabetic patients with myocardial infarction. Br Med J 1986;293:917–922.

    Google Scholar 

  46. Partamian JO, Bradley RF. (Acute myocardial infarction in 258 cases of diabetes. N Engl J Med 1965; 273:455.

    Google Scholar 

  47. Stanley WC, Lopaschuk GD, Kivilo KM. Alterations in myocardial energy metabolism in streptozotocin diabetes. In: McNeill JH, ed. Experimental Models of Diabetes. CRC Press, 1999:19–38.

  48. McGarry JD, Foster DW. Regulation of hepatic fatty acid oxidation and ketone body production. Ann Rev Biochem 1980;49:395–420.

    Google Scholar 

  49. Liu B, Clanachan AS, Schulz R, Lopaschuk GD. Cardiac efficiency is improved after ischemia by altering both the source and fate of protons. Circ Res 1996;79:940–948.

    Google Scholar 

  50. Liu B, El Alaoui-Talibi Z, Clanachan AS, Schulz R, Lopaschuk GD. Uncoupling of contractile function from mitochondrial TCA cycle activity and MV02 during reperfusion of ischemic hearts. Am J Physiol 1996;270:H72-H80.

    Google Scholar 

  51. Benzi RH, Lerch R. Dissociation between contractile function and oxidative metabolism in postischemic myocardium. Circ Res 1992;71:567–576.

    Google Scholar 

  52. Liedtke AJ, DeMaison L, Eggleston AL, Cohen LM, Nellis SH. Changes in substrate metabolism and effects of excess fatty acids in reperfused mycoardium. Circ Res 1988;62:535–542.

    Google Scholar 

  53. Lopaschuk GD, Spafford MA, Davies NJ, Wall SR. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 1990;66:546–553.

    Google Scholar 

  54. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem 1991;267:3825–3831.

    Google Scholar 

  55. Lopaschuk GD, Stanley WC. Manipulation of energy metabolism in the heart. Science and Medicine 1997;4:2–51.

    Google Scholar 

  56. Gwilt DJ, Petri M, Lewis PW, Nattrass M, Pentecost BL Myocardial infarct size and mortality in diabetic patients. Br Heart J 1985;54:466–472.

    Google Scholar 

  57. Jaffe AS, Spadaro JJ, Schechtman K, Roberts R, Geltman EM, Sobel BE. Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. Am Heart J 1984; 108:31–37.

    Google Scholar 

  58. Paulson D. The diabetic heart is more sensitive to ischemic injury. Cardiovasc Res 1997;34:104–112.

    Google Scholar 

  59. Haider B, Ahmed SS, Moschos CB, Oldewurtel HA and Regan TJ. Myocardial function and coronary blood flow response to acute ischemia in chronic canine diabetes. Circ Res 1977;40:577–583.

    Google Scholar 

  60. Forrat R, Sebbage L, Wiernsperger N, Guidollet J, Renaud S, de Logeril M. Acute myocardial infarction in dogs with experimental diabetes. Cardiovasc Res 1993;27:1908–1912.

    Google Scholar 

  61. Liu Y, Thornton JD, Cohen MV, Downey JM, Schaffer SW. Streptozotocin-induced non-insulin-dependent diabetes protects the heart from infarction. Circulation 1993;88:1273–1278.

    Google Scholar 

  62. Ingebretsen CG, Moreau P, Hawelu-Johnson C, Ingebretsen WR Jr. Performance of diabetic rat hearts: effects of anoxia and increased work. Am J Physiol 1980;239:H614-H620.

    Google Scholar 

  63. Hearse DJ, Stewart DA, Chain EB. Diabetes and the survival and recovery of the anoxic myocadium. J Mol Cell Cardiol 1975;7:397–415.

    Google Scholar 

  64. Mokuda O, Sakamoto Y, Ikeda T, Mashiba H. Effects of anoxia and low free fatty acid on myocardial energy metabolism in streptozotocin-diabetic rats. Ann Nutr Metab 1990;34:259–265.

    Google Scholar 

  65. Savabi F, Kirsch A. Altered functional activity and anoxic tolerance in diabetic rat isolated aorta. Arch Biochem Biophys 1990;279:183–187.

    Google Scholar 

  66. Feuvray D, Idell-Wenger JA, Neely JR. Effects of ischemia on rat myocardial function and metabolism in diabetes. Circ Res 1979;44:322–329.

    Google Scholar 

  67. Lopaschuk GD, Spafford M. Response of isolated working hearts from acutely and chronically diabetic rats to fatty acids and carnitine palmitoyltransferase I inhibition during reduction of coronary flow. Circ Res 1989;65:378–387.

    Google Scholar 

  68. Lopaschuk GD, Spafford M. Acute insulin withdrawal contributes to ischemic heart failure in spontaneously diabetic BB Wistar rats. Can J Physiol Pharmacol 1990;68:462–466.

    Google Scholar 

  69. Broderick TL, Barr RL, Quinney HA, Lopaschuk GD. Acute insulin withdrawal from diabetic BB rats decreases myocardial glycolysis during low-flow ischemia. Metabolism 41:332–338.

  70. Higuchi M, Ikema S, Matsuzaki T, Hirayama K, Sakanashi M. Effects of norepinephrine on hypoperfusion-rreperfusion injuries in hearts isolated from normal and diabetic rats. J Mol Cell Cardiol 1991;23:137–148.

    Google Scholar 

  71. Lopaschuk GD, Tsang H. Metabolism of palmitate in isolated working hearts from spontaneously diabetic “BB” Wistar rats. Circ Res 1987;61:853–858.

    Google Scholar 

  72. Gamble J, Lopaschuk GD. Glycolysis and glucose oxidation during reperfusion of ischemic hearts from diabetic rats. Biochim Biophys Acta 1994;1225:191–199.

    Google Scholar 

  73. Lopaschuk GD, Spafford MA. Glucose and palmitate oxidation during reperfusion of ischemic hearts from diabetic rats. Diabetic Heart 1991;1:451–464.

    Google Scholar 

  74. Pieper GM. Superoxide dismutase plus catalase improves post-ischaemic recovery in the diabetic heart. Cardiovas Res 1988;22:916–926.

    Google Scholar 

  75. Vogel WM, Apstein CS. Effects of alloxan-induced diabetes on ischemic reperfusion injury in rabbit hearts. Circ Res 1988;62;975–982.

    Google Scholar 

  76. Hekimian G, Feuvray D. Reduction of ischemiainduced acyl carnitine accumulation by TDGA and its influence on lactate dehydrogenase release in diabetic rat hearts. Diabetes 1986;35:906–910.

    Google Scholar 

  77. Tani M, Neely JR. Hearts from diabetic rats are more resistant to in vitro ischemia: Possible role of altered Ca2+ metabolism. Circ Res 1988;62:931–940.

    Google Scholar 

  78. Lopaschuk GD, Saddik M, Barr R, Huang L, Barker CC, Muzyka RA. Effects of high levels of fatty acids on functional recovery of ischemic hearts from diabetic rats. Am J Physiol 1992;263:E1046–E1053.

    Google Scholar 

  79. Broderick TL, Quinney HA, Lopaschuk GD. L-carnitine increase glucose metabolism and mechanical function following ischemia in diabetic rat heart. Cardiovas Res 1995;29:373–378.

    Google Scholar 

  80. Paulson DJ, Kopp SJ, Peace DG, Tow JP. Improved post-ischemic recovery of cardiac pump function in exercised trained diabetic rats. J Appl Physiol 1988;65:187–193.

    Google Scholar 

  81. Pieper GM, Gross GJ. Diabetes alters postischemic response to a prostacyclin mimetic. Am J Physiol 1989;256:H1353–H1360.

    Google Scholar 

  82. Opie LH. Metabolism of free fatty acids, glucose and catecholamines in acute myocardial infarction- Relation to myocardial ischemia and infarct size. Am J Cardiol 1975;36:938–953.

    Google Scholar 

  83. Neely JR, Grotyohann LW. Role of glycolytic products in damage to ischemic myocardium. Circ Res 1984;55:816–824.

    Google Scholar 

  84. Marban E, Koretsune Y, Corretti M, Chacko VP, Kusuoka H. Calcium and its role in myocardial cell injury during ischemia and reperfusion. Circulation 1989;80:IV-17–IV-22.

    Google Scholar 

  85. Tani M, Neely JR. Na+ accumulation increases Ca2+ overload and impairs function in anoxic rat heart. J Mol Cell Cardiol 1990;22:57–72.

    Google Scholar 

  86. Tani M. Mechanisms of Ca2+ overload in reperfused ischemic myocardium. Annu Rev Physiol 1990;52: 543–559.

    Google Scholar 

  87. Tani M, Neely JR. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Circ Res 1989;65:1045–1056.

    Google Scholar 

  88. Randle PJ, Newsholme EA, Garland PB. Regulation of glucose uptake by muscle. Effects of fatty acid, ketone bodies and pyruvate, and of alloxan diabetes and starvation, on the uptake and metabolic fate of glucose in rat heart and diaphram muscle. Biochem J 1964; 93:652–665.

    Google Scholar 

  89. Khandoudi N, Bernard M, Cozzone P, Feuvray D. Intracellular pH and role of Na+ /H+ exchange during ischaemia and reperfusion of normal and diabetic rat hearts. Cardiovas Res 1990;24; 873–878.

    Google Scholar 

  90. Lagadic-Gossmann D, Chesnais JM, Feuvray D. Intracellular pH regulation in papillary muscle from steptozotocin diabetic rats: an ion-sensitive microelectrode study. Pflügers Arch 1988;414:613–617.

    Google Scholar 

  91. Pierce GN, Ramjiawan B, Dhalla NS, Ferrari R. Na+- H+ exchange in cardiac sarcolemmal vesicles isolated from diabetic rats. Am J Physiol 1990;258:H255–H261.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopaschuk, G.D. Metabolic Abnormalities in the Diabetic Heart. Heart Fail Rev 7, 149–159 (2002). https://doi.org/10.1023/A:1015328625394

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015328625394

Navigation