Skip to main content
Log in

Analysis of Genetic Factors Associated with Nitric Oxide Production in Mice

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Different mouse strains possessing the Nramp1 r allele, which were theoretically expected to have relatively high nitric oxide (NO) production after cytokine stimulation, were used to analyze the genetic factors associated with NO production. After gamma interferon and lipopolysaccharide stimulation, the strains NZB/N, DBA/2N, AKR/N, and A/J showed significantly low NO production; NJL, 129/J, MOG, SJL/J, CBA/N, and NOD/Shi had moderate amounts; and C3H/He and SPR had the highest levels as compared to the other mice. The F1 progeny of A/J × C3H/He and AKR/N × C3H/He showed significantly higher NO production, whereas the F1 progeny of DBA/2N × C3H/He produced a relatively low amount. Furthermore, the backcross progeny from their F1 showed variations in NO production, and therefore it was speculated that the regulation of NO production is polygenic. Genetic typing experiments related to the NO production in the backcross progeny demonstrated significant deviations to some genetic microsatellite markers. Sequencing of the iNOS promoter regions of the Nramp1 r strains to examine the relationship with NO production revealed that MOG and SPR strains had substitutions within the NF-κB and the γ-IRE transcription binding factor, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ables, G. P., Takamatsu, D., Noma, H., El-Shazly, S., Jin, H. K., Taniguchi, T., Sekikawa, K., and Watanabe, T. (2001). The roles of Nramp1 and Tnfa genes in nitric oxide production and their effect on the growth of Salmonella typhimurium in macrophages from Nramp1 congenic and TNF-®¡=¡ mice. J. Interf. Cytok. Res. 21: 53.

    Google Scholar 

  • Alley, E.W., Murphy, W. J., and Russell, S.W. (1995). A classical enhancer element responsive to both lipopolysaccharide and interferon-° augments induction of the iNOS gene in mouse macrophages. Gene 158: 247.

    Google Scholar 

  • Arias, M., Rojas, M., Zabaleta, J., Rodriguez, J. I., Paris, S. C., Barrera, L. F., and Garcia, L. F. (1997). Inhibition of virulent Mycobacterium tuberculosis by Bcgr and Bcgs macrophages correlates with nitric oxide production. J. Infect. Dis. 176: 1552.

    Google Scholar 

  • Barrera, L. F., Kramnik, I., Skamene, E., and Radzioch, D. (1994). Nitrite production by macrophages derived from BCG-resistant and susceptible congenic mouse strains in response to IFN-° and infection with BCG. Immunology 82: 457.

    Google Scholar 

  • Barton, C. H., Whitehead, S. H., and Blackwell, J. M. (1995). Nramp transfection transfers Ity/Lsh/Bcgrelated pleiotropic effects on macrophage activation: Influence on oxidative burst and nitric oxide pathways. Mol. Med. 1: 267.

    Google Scholar 

  • Blackwell, J. M., Barton, C. H., White, J. K., Roach, T. I. A., Shaw, M., Whitehead, S. H., Mock, B. A., Searle, S., Williams, H., and Baker, A. (1994). Genetic regulation of leishmanial and mycobacterial infections: The Lsh/Ity/Bcg gene story continues. Immunol. Lett. 43: 99.

    Google Scholar 

  • Brown, D. H., Lafuse, W., and Zwilling, B. S. (1997). Stabilized expression of mRNA is associated with mycobacterial resistance controlled by Nramp1. Infect. Immun. 65: 597.

    Google Scholar 

  • Cenci, E., Romani, L., Mencacci, A., Spaccapelo, R., Schiaffella, E., Puccetti, P., and Bistoni, F. (1993). Interleukin-4 and interleukin-10 inhibit nitric oxide-dependent macrophage killing of Candida albicans. Eur. J. Immunol. 23: 1034.

    Google Scholar 

  • Decker, K. (1997). The response of liver macrophages to inflammatory stimulation. Keio J. Med. 47: 1.

    Google Scholar 

  • Diefenbach, A., Schindler, H., Röllinghoff, M., Yokoyama, W. M., and Bogdan, C. (1999). Requirement for type 2 NO synthase for IL-12 signaling in innate immunity. Science 284: 951.

    Google Scholar 

  • Fontt, E. O., and Vray, B. (1995). Relationship between granulocyte macrophage-colony stimulating factor, tumour necrosis factor-α and Trypanosoma cruzi infection of murine macrophages. Parasite Immunol. 17: 135.

    Google Scholar 

  • Gerling, I. C., Karlsen, A. E., Chapman, H. D., Andersen, H. U., Boel, E., Cunningham, J. M., Nerup, J., and Leiter, E. H. (1994). The inducible nitric oxide synthase, Nos2, maps to mouse Chromosome 11. Mamm. Genome 5: 318.

    Google Scholar 

  • Higginbotham, J. N., Lin, T. L., and Preutt, S. B. (1992). Effect of macrophage activation on killing of Listeria monocytogenes. Roles of reactive oxygen or nitrogen intermediates, rate of phagocytosis, and return of bacteria in endosomes. Clin. Exp. Immunol. 88: 492.

    Google Scholar 

  • Hussain, I., and Qureshi, M. A. (1998). The expression and regulation of nitric oxide synthase gene differ in macrophages from chickens of different genetic background. Vet. Immunol. Immunopathol. 61: 317.

    Google Scholar 

  • Jü., Bernhagen, J., Metz, C. N., R¨ollinghoff, M., Bucala, R., and Gessner, A. (1998). Migration inhibitory factor induces killing of Leishmania major by macrophages: Dependence on reactive nitrogen intermediates and endogenous TNF-α J. Immunol. 161: 2383.

    Google Scholar 

  • Kamijo, R., Harada, H., Matsuyama, T., Bosland, M., Gerecitano, J., Shapiro, D., Le, J., Koh, S. I. Kimura, T., Green, S. J., Mak, T. W., Taniguchi, T., and Vilcek, J. (1994). Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263: 1612.

    Google Scholar 

  • Kim, Y. M., Lee, B. S., Yi, K.Y., and Paik, S. G. (1997). Upstream NF-·Bsite is required for the maximal expression of mouse inducible nitric oxide synthase gene in interferon-° plus lipopolysaccharideinduced RAW 264.7 macrophages. Biochem. Biophys. Res. Comm. 236: 655.

    Google Scholar 

  • Kleinert, H., Wallerath, T., Fritz, G., Ihrig-Biedert, I., Rodriguez-Pascual, F., Geller, D., and F¨orstermann, U. (1998). Cytokine induction of NO synthase II in human DLD-1 cells: Roles of JAK-STAT, AP-1 and NF-·B-signaling pathways. Br. J. Pharma. 125: 193.

    Google Scholar 

  • Klimp, A. H., Regts, J., Scherphof, G. L., de Vries, E. G., and Daemen, T. (1999). Effect of intraperitoneally administered recombinant murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) on the cytotoxic potential of murine peritoneal cells. Br. J. Cancer. 79: 89.

    Google Scholar 

  • Liew, F. Y., Li, Y., Severn, A., Millot, S., Schmidt, J., Salter, M., and Moncada, S. (1991). A possible novel pathway of regulation by murine T helper type-1 (Th2) cells of a Th1 cell activity via the modulation of the induction of nitric oxide synthase on macrophages. Eur. J. Immunol. 21: 2489.

    Google Scholar 

  • Lowenstein, C. J., Alley, E.W., Raval, P., Snowman, A. M., Snyder, S. H., Russell, S.W., and Murphy, W. J. (1993). Macrophage nitric oxide synthase gene: Two upstream regions mediate induction by interferon-° and lipopolysaccharide. Proc. Natl. Acad. Sci. USA 90: 9730.

    Google Scholar 

  • MacMicking, J., Xie, Q.W., and Nathan, C. (1997). Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323.

    Google Scholar 

  • Malo, D., Vogan, K., Vidal, S., Hu, J., Cellier, M., Schurr, E., Fuks, A., Bumstead, N., Morgan, K., and Gros, P. (1994). Haplotype mapping and sequence analysis of the mouse Nramp gene predict susceptibility to infection with intracellular parasites. Genomics 23: 51.

    Google Scholar 

  • Marcinkiewicz, J., Pater, M., and Grabowska, V. (1994). An improved experimental method for the study of in vitro release of nitric oxide by murine peritoneal macrophages. Arch. Immunol. Therap. Exp. 42: 95.

    Google Scholar 

  • Nathan, C. (1995). Natural resistance and nitric oxide. Cell 82: 873.

    Google Scholar 

  • Rao, K. M. K. (2000). Molecular mechanisms regulating iNOS expression in various cell types. J. Toxicol. Environ. Health 3: 27.

    Google Scholar 

  • Rojas, M., Barrera, L. F., Puzo, G., and Garcia, L. F. (1997). Differential induction of apoptosis by virulent Mycobacterium tuberculosis in resistant and susceptible murine macrophages. J. Immunol. 159: 1352.

    Google Scholar 

  • Saura, M., Zaragoza, C., Bao, C., McMillan, A., and Lowenstein, C. J. (1999). Interaction of interferon regulatory factor-1 and nuclear factor ·B during activation of inducible nitric oxide synthase transcription. J. Mol. Biol. 289: 459.

    Google Scholar 

  • Spink, J., and Evans, T. (1997). Binding of the transcription factor interferon regulatory factor-1 to the inducible nitric-oxide synthase promoter. J. Biol. Chem. 272: 24417.

    Google Scholar 

  • Swanson, R. N., and O'Brien, A. D. (1983). Genetic control of the innate resistance of mice to Salmonella typhimurium: Ity gene is expressed in vivo by 24 hours after infection. J. Immunol. 131: 3014.

    Google Scholar 

  • Vidal, S. M., Malo, D., Vogan, K., Skamene, E., and Gros, P. (1993). Natural resistance to infection with intracellular parasites: Isolation of a candidate for Bcg. Cell 73: 469.

    Google Scholar 

  • Weisz, A., Cicatiello, L., and Esumi, H. (1996). Regulation of the inducible-type nitric oxide synthase gene promoter by interferon-γrial lipopolysaccharide and NG-monomethyl-L-argnine. Biochem. J. 316: 209.

    Google Scholar 

  • Xie, Q. W., Cho, H., Calaycay, J., Mumford, R. A., Swiderek, K. M., Lee, T. D., Ding, A., Troso, T., and Nathan, C. (1992). Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256: 225.

    Google Scholar 

  • Xie, Q. W., Whisnant, R., and Nathan, C. (1993). Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon-° and bacterial lipopolysaccharide. J. Exp. Med. 177: 1779.

    Google Scholar 

  • Xu, D., McSorley, S. J., Tetley, L., Chatfield, S., Dougan, G., Chan, W. L., Satoskar, A., David, J. R., and Liew, F. Y. (1998). Protective effect on Leishmania major infection of migration inhibitory factor, TNF-α, and IFN-° administered orally via attenuated Salmonella typhimurium. J. Immunol. 160: 1285.

    Google Scholar 

  • Yang, C. W., Yu, C. C., Ko, Y. C., and Huang, C. C. (1998). Aminoguanidine reduces glomerular inducible nitric oxide synthase (iNOS) and transforming growth factor-beta 1 (TGF-beta 1)mRNA expression and diminishes glomerulosclerosis in NZB/W F1 mice. Clin. Exp. Immunol. 113: 258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ables, G.P., Hamashima, N. & Watanabe, T. Analysis of Genetic Factors Associated with Nitric Oxide Production in Mice. Biochem Genet 39, 379–394 (2001). https://doi.org/10.1023/A:1013859502862

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013859502862

Navigation