Skip to main content
Log in

In Vitro and in Vivo Properties of Recombinant Human Serum Albumin from Pichia Pastoris Purified by a Method of Short Processing Time

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Recombinant human serum albumin (rHSA), secreted by a Pichia pastorisexpression system, was purified by a fast and efficient method, the essential feature of which is strong but reversible binding of the protein to Blue Sepharose. The structural characteristics, stability, and ligand-binding properties of the resulting protein were examined, and pre-clinical studies were performed.

Methods. Protein structure was investigated by amino acid sequencing, sodium polyacrylamide gel electrophoresis, CD spectroscopy and chromatography. Stability was examined by denaturation by guanidine hydrochloride and by calorimetry, and ligand binding was studied by ultrafiltration. Rat experiments were performed with 125I-labeled albumin.

Results. Far-ultraviolet and near-ultraviolet CD spectra of rHSA were identical to those of human serum albumin isolated from serum (HSA). Mercaptalbumin and non-mercaptalbumin were separated by high-performance liquid chromatography using an N-methylpyridinium polymer-based column. 60% of rHSA existed as mercaptalbumin, a content that is higher than that of a commercial preparation of HSA. Fatty acids, N-acetyl-L-tryptophan and pasteurization had similar effects on the conformational stability of rHSA and HSA. Stereoselective ligand-binding properties (warfarin, phenprocoumon, pranoprofen and ibuprofen) of rHSA were the same as those of HSA. The effect of the neutral to base transition on warfarin (site I-ligand) and dansylsarcosine (site II-ligand) binding to rHSA was also similar to HSA. In vivo studies showed comparable half-lives, excretion and tissue distributions of the two albumin preparations.

Conclusion. The present yeast expression system and purification procedure result in rHSA with structural and functional properties very similar to those of HSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. U. Kragh-Hansen. Molecular aspects of ligand binding to serum albumin. Pharmacol. Rev. 33:17-53 (1981).

    Google Scholar 

  2. T. Peters Jr. All about Albumin: Biochemistry, Genetics, and Medical Applications, Academic Press, San Diego, California 1996.

    Google Scholar 

  3. C. W. Saunders, B. J. Schmidt, R. L. Mallonee, and M. S. Guyer. Secretion of human serum albumin from Bacillus subtilis. J. Bacteriol. 169:2917-2925 (1987).

    Google Scholar 

  4. H. Ohi, M. Miura, R. Hiramatsu, and T. Ohmura. The positive and negative cis-acting elements for methanol regulation in the Pichia pastoris AOX2. Mol. Gen. Genet. 243:489-499 (1994).

    Google Scholar 

  5. X. He and D. C. Carter. Atomic structure and chemistry of human serum albumin. Nature 358:209-215 (1992).

    Google Scholar 

  6. S. Curry, H. Mandelkow, P. Brick, and N. Franks. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat. Struct. Biol. 5: 827-835 (1998).

    Google Scholar 

  7. S. Sugio, A. Kashima, S. Mochizuki, M. Noda, and K. Kobayashi. Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng. 12:439-446 (1999).

    Google Scholar 

  8. J. K. Noel and M. J. Hunter. Bovine mercaptalbumin and nonmercaptalbumin monomers. Interconversions and structural differences. J. Biol. Chem. 247:7391-7406 (1972).

    Google Scholar 

  9. A. O. Pedersen and J. Jacobsen. Reactivity of the thiol group in human and bovine albumin at pH 3–9, as measured by exchange with 2,2′-dithiodipyridine. Eur. J. Biochem. 106:291-295 (1980).

    Google Scholar 

  10. M. Sogami, S. Nagoka, S. Era, M. Honda, and K. Noguchi. Resolution of human mercapt-and nonmercaptalbumin by high-performance liquid chromatography. Int. J. Peptide Protein Res. 24:96-103 (1984).

    Google Scholar 

  11. K. Wallevik. SS-interchanged and oxidized isomers of bovine serum albumin separated by isoelectric focusing. Biochim. Biophys. Acta 420:42-56 (1976).

    Google Scholar 

  12. G. Sudlow, D. J. Birkett, and D. N. Wade. The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol. 11:824-832 (1975).

    Google Scholar 

  13. J. Wilting, W. F. van der Giesen, L. H. M. Janssen, M. M. Weideman, M. Otagiri, and J. H. Perrin. The effect of albumin conformation on the binding of warfarin to human serum albumin. The dependence of the binding of warfarin to human serum albumin on the hydrogen, calcium, and chloride ion concentrations as studied by circular dichroism, fluorescence, and equilibrium dialysis. J. Biol. Chem. 255:3032-3037 (1980).

    Google Scholar 

  14. S. Kasai-Morita, T. Horie, and S. Awazu. Influence of the N-B transition of human serum albumin on the structure of the warfarin-binding site. Biochim. Biophys. Acta 915:277-283 (1987).

    Google Scholar 

  15. A. Sumi, K. Okuyama, K. Kobayashi, W. Ohtani, T. Ohmura, and K. Tyokoyama. Purification of recombinant human serum albumin. Efficient purification using STREAMLINE. Bioseparation 8:195-200 (1999).

    Google Scholar 

  16. R. F. Chen. Removal of fatty acids from serum albumin by charcoal treatment. J. Biol. Chem. 242:173-181 (1967).

    Google Scholar 

  17. C. E. Petersen, C. E. Ha, K. Harohalli, D. S. Park, and N. V. Bhagavan. Mutagenesis studies of thyroxine binding to human serum albumin define an important structural characteristic of subdomain 2A. Biochemistry 36:7012-7017 (1997).

    Google Scholar 

  18. A. Sugii, K. Harada, K. Nishimura, R. Hanaoka, and S. Masuda. High-performance liquid chromatography of proteins on N-methylpyridinium polymer columns. J. Chromatogr. 472:357-364 (1989).

    Google Scholar 

  19. R. Narazaki, K. Harada, A. Sugii, and M. Otagiri. Kinetic analysis of the covalent binding of captopril to human serum albumin. J. Pharm. Sci. 86:215-219 (1997).

    Google Scholar 

  20. D. C. Turner and L. Brand. Quantitative estimation of protein binding site polarity. Fluorescence of N-arylaminonaphthalene-sulfonates. Biochemistry 7:3381-3390 (1968).

    Google Scholar 

  21. W. M. Hunter and F. C. Greenwood. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature 194:495-496 (1962).

    Google Scholar 

  22. M. Sogami, S. Era, S. Nagaoka, K. Kuwata, K. Kida, J. Shigemi, K. Miura, E. Suzuki, Y. Muto, and E. Tomita. High-performance liquid chromatography studies on non-mercapt in equilibrium with mercapt conversion of human serum albumin II. J. Chromatogr. 332:19-27 (1985).

    Google Scholar 

  23. S. Era, T. Hamaguchi, M. Sogami, K. Kuwata, E. Suzuki, K. Miura, K. Kawai, Y. Kitazawa, H. Okabe, and A. Noma. Further studies on the resolution of human mercapt-and nonmercaptalbumin and on human serum albumin in the elderly by high-performance liquid chromatography. Int. J. Peptide Protein Res. 31:435-442 (1988).

    Google Scholar 

  24. D. J. Meyer, H. Kramer, N. Ozer, B. Coles, and B. Ketterer. Kinetics and equilibria of S-nitrosothiol-thiol exchange between glutathione, cysteine, penicillamines and serum albumin. FEBS Lett. 345:177-180 (1994).

    Google Scholar 

  25. B. N. Brown, E. Jähnchen, W. E. Müller, and U. Wollert. Optical studies on the mechanism of the interaction of the enantiomers of anticoagulant drugs phenprocoumon and warfarin with human serum albumin. Mol. Pharmacol. 13:70-79 (1977).

    Google Scholar 

  26. T. Nomura, T. Imai, and M. Otagiri. Stereoselective disposition of pranoprofen, a nonsteroidal antiinflammatory drug, in rabbits. Biol. Pharm. Bull. 16:298-303 (1993).

    Google Scholar 

  27. T. Itoh, Y. Saura, Y. Tsuda, and H. Yamada. Stereoselectivity and enantiomer-enantiomer interactions in the binding of ibuprofen to human serum albumin. Chirality 9:643-649 (1997).

    Google Scholar 

  28. U. Kragh-Hansen. A micromethod for delipidation of aqueous proteins. Anal. Biochem. 210:318-327 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, H., Yamasaki, K., Kragh-Hansen, U. et al. In Vitro and in Vivo Properties of Recombinant Human Serum Albumin from Pichia Pastoris Purified by a Method of Short Processing Time. Pharm Res 18, 1775–1781 (2001). https://doi.org/10.1023/A:1013391001141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013391001141

Navigation