Skip to main content
Log in

Limited Brain Access for Leptin in Obesity

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Obesity is a major health problem that contributes to the development of type 2 diabetes, hypertension, dyslipidemia, and cardiovascular disease. The current pharmacological therapies for obesity are limited and may have significant side effects. Leptin therapy was shown to effectively cause weight loss in obese rats, however its effectiveness in humans is still under investigation. Obese humans have significantly elevated plasma leptin concentrations compared with lean individuals. Plasma leptin concentrations strongly correlated with percentage of body fat. Leptin concentration in the cerebrospinal fluid (CSF) is correlated, in a nonlinear manner, with plasma leptin levels and body mass index (BMI). The ratio of CSF leptin levels to serum leptin levels was 4 times greater in lean individuals than in obese individuals. One interpretation of this finding is that human obesity could be secondary to a central resistance to leptin action, causing a relative leptin deficiency in the CNS, rather than inadequate production of leptin. Six years after the discovery of leptin we still do not have a clear understanding of how leptin accesses its targets in the brain, or whether there is defect in this process in the brain of obese individuals. In this manuscript we will review the different leptin gateways to the brain and the potential sites where a defect in leptin action may be present, as well as some potential clinical implications of leptin. A better understanding of how leptin reaches the brain and how it modulates the release of hypothalamic neuropeptides will be important in understanding the role that leptin plays in the pathophysiology of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Task Force on the Prevention and Treatment of Obesity. Overweight, obesity, and health risk. Arch Intern Med 2000; 160:898–904.

    Google Scholar 

  2. Allison DB, Fontaine KR, Manson JE, Stevens J, VanItallie TB. Annual deaths attributable to obesity in the United States. JAMA 1999;282:1530–1538.

    Google Scholar 

  3. Wolf AM, Colditz GA. Current estimates of the economic cost of obesity in the United States. Obes Res 1998;6:97–106.

    Google Scholar 

  4. Hill JO, Wyatt HR, Melanson EL. Genetic and environmental contributions to obesity. Med Clin North Am 2000; 84:333–346.

    Google Scholar 

  5. Friedman JM. Obesity in the millennium. Nature 2000; 404:632–634.

    Google Scholar 

  6. Leibel RL, Rosenbaum M, Hirsch J. Changes in energy expenditure resulting from altered body weight. N Engl J Med 1995;332:621–628.

    Google Scholar 

  7. Caro JF, Sinha MK, Kolaczynski JW, Zhang PL, Considine RV. Leptin: The tale of an obesity gene. Diabetes 1996;45:1455–1462.

    Google Scholar 

  8. Schwartz MW, Seeley RJ. Neuroendocrine responses to starvation and weight loss. N Engl J Med 1997;336:1802–1811.

    Google Scholar 

  9. Harris RB. Role of set-point theory in regulation of body weight. FASEB J 1990;4:3310–3318.

    Google Scholar 

  10. Weigle DS. Appetite and the regulation of body composition. FASEB J 1994;8:302–310.

    Google Scholar 

  11. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425–432.

    Google Scholar 

  12. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarity A, Moore KJ, Smutko JS, Mays GG, Woolf EA, Monroe CA, Tepper RI. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995; 83:1263–1271.

    Google Scholar 

  13. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science 1995;269:546–549.

    Google Scholar 

  14. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998;395:763–770.

    Google Scholar 

  15. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KJ, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell 1996;84:491–495.

    Google Scholar 

  16. Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, Leibel RL. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 1996;271:994–996.

    Google Scholar 

  17. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, Friedman JM. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996;379:632–635.

    Google Scholar 

  18. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996;334:292–295.

    Google Scholar 

  19. Hamilton BS, Paglia D, Kwan AY, Deitel M. Increased obese mRNA expression in omental fat cells from massively obese humans. Nat Med 1995;1:953–956.

    Google Scholar 

  20. Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, Lynn RB, Zhang PL, Sinha MK, Considine RV. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: A possible mechanism for leptin resistance. Lancet 1996;348:159–161.

    Google Scholar 

  21. Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D Jr. Cerebrospinal fluid leptin levels: Relationship to plasma levels and to adiposity in humans. Nat Med 1996;2:589–593.

    Google Scholar 

  22. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM. Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci USA 1997;94:8878–8883.

    Google Scholar 

  23. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides 1996;17:305–311.

    Google Scholar 

  24. Flier JS, Maratos-Flier E. Obesity and the hypothalamus: Novel peptides for new pathways. Cell 1998;92:437–440.

    Google Scholar 

  25. Tang-Christensen M, Havel PJ, Jacobs RR, Larsen PJ, Cameron JL. Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques. J Clin Endocrinol Metab 1999;84:711–777.

    Google Scholar 

  26. Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides 1996;17:305–311.

    Google Scholar 

  27. Pan W, Kastin AJ. Penetration of neurotrophins and cytokines across the blood-brain/blood-spinal cord barrier. Adv Drug Deliv Rev 1999;36:291–298.

    Google Scholar 

  28. Banks WA, DiPalma CR, Farrell CL. Impaired transport of leptin across the blood-brain barrier in obesity. Peptides 1999;20:1341–1345.

    Google Scholar 

  29. Burguera B, Couce ME, Curran G, Lamsam J, Jensen MD, Cleary M, Poduslo J. Obesity is associated with a decreased of leptin transport across the blood brain barrier in rats. Diabetes 2000;49:1219–1223.

    Google Scholar 

  30. Maness LM, Banks WA, Kastin AJ. Persistence of blood-tobrain transport of leptin in obese leptin-deficient and leptin receptor-deficient mice. Brain Res 2000;873:165–167.

    Google Scholar 

  31. Bjorbaek C, Elmquist JK, Michl P, Ahima RS, van Bueren A, McCall AL, Flier JS. Expression of leptin receptor isoforms in rat brain microvessels. Endocrinology 1998;139:3485–3491.

    Google Scholar 

  32. Devos R, Richards JG, Campfield LA, Tartaglia LA, Guisez Y, van Der Heyden J, Travernier J, Plaetinck G, Burn P. OB protein binds speci~cally to the choroid plexus of mice and rats. Proc Natl Acad Sci USA 1996;93:5668–5673.

    Google Scholar 

  33. Lynn RB, Cao GY, Considine RV, Hyde TM, Caro JF. Autoradiographic localization of leptin binding in the choroid plexus of ob/ob and db/db mice. Biochem Biophys Res Commun 1996;219:884–889.

    Google Scholar 

  34. Couce ME, Burguera B, Parisi JE, Jensen MD, Lloyd RV. Localization of leptin receptor in the human brain. Neuroendocrinology 1997;66:145–150.

    Google Scholar 

  35. Maness LM, Kastin AJ, Farrell CL, Banks WA. Fate of leptin after intracerebroventricular injection into the mouse brain. Endocrinology 1998;139:4556–4562.

    Google Scholar 

  36. Banks WA, Clever CM, Farrell CL. Partial saturation and regional variation in the blood-to-brain transport of leptin in normal weight mice. Am J Physiol Endocrinol Metab 2000;278:E1158–E116536.

    Google Scholar 

  37. Burguera B, Couce ME, Long J, Lamsam J, Jensen MD, Parisi JE, Lloyd RV. The long form of the leptin receptor (OB-Rb) is widely expressed in the human brain. Neuroendocrinology 2000;61:187–195.

    Google Scholar 

  38. Jin L, Burguera B, Couce ME, Lamsam J, Kovacz K, Lloyd RV. Peptin receptor (OB-Rb) expression in normal and neoplastic human pituitaries. Regulation of pituitary cell proliferation by leptin. J Clin Endocrinol Metab 1999;84:2903–2911.

    Google Scholar 

  39. Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Trayhurn P. Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in mouse hypothalamus and adjacent brain regions by in situ hybridization. FEBS Lett 1996;387:113–116.

    Google Scholar 

  40. Golden PL, Maccagnan TJ, Pardridge WM. Human bloodbrain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. J Clin Invest 1997;99:14–18.

    Google Scholar 

  41. Burguera B, Couce ME, Lloyd RV. Leptin receptor and the brain: A tale of body weight. Regulation Curr Op Endocrinol Diabetes 2000;7:225–230.

    Google Scholar 

  42. Bjorbaek C, Elmquist JK, Michl P, Ahima RS, van Bueren A, McCall AL, Flier JS. Expression of leptin receptor isoforms in rat brain microvessels. Endocrinology 1998;139:3485–3491.

    Google Scholar 

  43. Zamorano PL, Mahesh VB, De Sevilla LM, Chorich LP, Bhat GK, Brann DW. Expression and localization of the leptin receptor in endocrine and neuroendocrine tissues of the rat. Neuroendocrinology 1997;65:223–228.

    Google Scholar 

  44. Karonen SL, Koistinen HA, Nikkinen P, Koivisto VA. Is brain uptake of leptin in vivo saturable and reduced by fasting? Eur J Nucl Med 1998;25:607–612.

    Google Scholar 

  45. Thomas SA, Preston JE, Wilson MR, Farrell CL, Segal MB. Leptin transport at the blood-cerebrospinal _uid barrier using the perfused sheep choroid plexus model. Brain Res 2001;895:283–290.

    Google Scholar 

  46. Keep RF, Jones H. A morphometric study on the development of the lateral ventricle choroid plexus, choroid plexus capillaries and ventricular ependyma in the rat. Dev Brain Res 1990;56:47–53.

    Google Scholar 

  47. Deane R, Segal M. The transport of sugars across the perfused choroid plexus of the sheep. J Physiol (Lond) 1985;362:245–260.

    Google Scholar 

  48. Elmquist JK, Bjørbÿk C, Ahima RS, Flier JS, Saper CB. Distributions of leptin receptor mRNA isoforms in the rat brain. J Comp Neurol 1998;395:535–547.

    Google Scholar 

  49. Williams LM, Adam CL, Mercer JG, Moar KM, Slater D, Hunter L, Findlay PA, Hoggard N. Leptin receptor and neuropeptide Y gene expression in the sheep brain. J Neuroendocrinol 1999;11:165–169.

    Google Scholar 

  50. Maness LM, Kastin AJ, Farrell CL, Banks WA. Fate of leptin after intracerebroventricular injection into the mouse brain. Endocrinology 1998;139:4556–4562.

    Google Scholar 

  51. Vaisse C, Halaas JL, Horvath CM, Darnell JE Jr, Stoffel M, Friedman JM. Leptin activation of Stat3 in the hypothalamus of wild-type and ob/ob mice but not db/db mice. Nat Genet 1996;14:95–97.

    Google Scholar 

  52. Darnell JE Jr. Reflections on STAT3, STAT5, and STAT6 as fat STATs. Proc Natl Acad Sci USA 1996;93:6221–6224.

    Google Scholar 

  53. Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG, Hara T, Miyajima A. A novel cytokine-inducible gene CISen codes anSH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors EMBO J 1995;14:2816–2826.

    Google Scholar 

  54. Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ, Gonda TJ, Alexander WS, Metcalf D, Nicola NA, Hilton DJ. A family of cytokine-inducible inhibitors of signalling. Nature 1997;387:917–921.

    Google Scholar 

  55. Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura A. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 1997;387:921–924.

    Google Scholar 

  56. Narazaki M, Fujimoto M, Matsumoto T, Morita Y, Saito H, Kajita T, Yoshizaki K, Naka T, Kishimoto T. Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Proc Natl Acad Sci USA 1998;95:13130–1313.

    Google Scholar 

  57. Kamura T, Sato S, Haque D, Liu L, Kaelin WG Jr, Conaway RC, Conaway JW. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 1998;12:3872–3881.

    Google Scholar 

  58. Masuhara M, Sakamoto H, Matsumoto A, Suzuki R, Yasukawa H, Mitsui K, Wakioka T, Tanimura S, Sasaki A, Misawa H, Yokouchi M, Ohtsubo M, Yoshimura A. Cloning and characterization of novel CISfamily genes. Biochem Biophys Res Commun 1997;239:439–446.

    Google Scholar 

  59. Adams TE, Hansen JA, Starr R, Nicola NA, Hilton DJ, Billestrup N. Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J Biol Chem 1998;273:1285–1287.

    Google Scholar 

  60. Bjørbÿk C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1998;1:619–625.

    Google Scholar 

  61. Auernhammer CJ, Chesnokova V, Bousquet C, Melmed S. Pituitary corticotroph SOCS-3: Novel intracellular regulation of leukemia-inhibitory factor-mediated proopiomelanocortin gene expression and adrenocorticotropin secretion. Mol Endocrinol 1998;12:954–961.

    Google Scholar 

  62. Wagner BJ, Hayes TE, Hoban CJ, Cochran BH. The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO J 1990;9:4477–4484.

    Google Scholar 

  63. El-Haschimi K, Pierroz DD, Hileman SM, Bjorbaek C, Flier JS. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest 2000; 105:1827–1832.

    Google Scholar 

  64. Fujioka K, Patane J, Lubina J, Lau D. CSF leptin levels after exogenous administration of recombinant methionyl human leptin. JAMA 1999;282:1517–1518.

    Google Scholar 

  65. Vidal S, Cohen SM, Horvath E, Kovacs K, Scheithauer BW, Burguera BG, Lloyd RV. Subcellular localization of leptin in non-tumorous and adenomatous human pituitaries: An immuno-ultrastructural study. J Histochem Cytochem 2000; 48:1147–1152.

    Google Scholar 

  66. Casanueva FF, Dieguez C. Neuroendocrine regulation and actions of leptin. Front Neuroendocrinol 1999;20: 317–363.

    Google Scholar 

  67. Shimabukuro M, Koyama K, Chen G, Wang MY, Trieu F, Lee Y, Newgard CB, Unger RH. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc Natl Acad Sci USA 1997;94:4637–4641.

    Google Scholar 

  68. Lord GM, Matarese G, Howard LK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T-cell immune response and reverses starvation-induced immunosupression. Nature 1998;394:897–901.

    Google Scholar 

  69. Garcia Mayor RV, Andrade MA, Rios M, Lage M, Dieguez C, Casanueva FF. Serum leptin levels in normal children: Relationship to age, gender, body mass index, pituitary-gonadal hormones, and pubertal stage. J Clin Endocrinol Metab 1997;82:2849–2855.

    Google Scholar 

  70. Shimabukuro M, Koyama K, Lee Y, Higa M, Kalra SP, Dube MG, Kalra PS, Unger RH. Comparing the hypothalamic and extrahypothalamic actions of endogenous hyperleptinemia. Proc Natl Acad Sci USA 1999;96:10373–10378.

    Google Scholar 

  71. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass. Cell 2000;100:197–207.

    Google Scholar 

  72. Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept 2000;92:73–78.

    Google Scholar 

  73. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL. Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 1999;140:1630–1638.

    Google Scholar 

  74. Burguera B, Hofbauer L, Thomas T, Gori F, Evans GL, Khosla S, Riggs BL, Turner RT. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology [in press] NO PAGES

  75. Tremollieres FA, Pouilles JM, Ribot C. Vertebral postmenopausal bone loss is reduced in overweight women: A longitudinal study in 155 early postmenopausal women. J Clin Endocrinol Metab 1993;77:683–686.

    Google Scholar 

  76. Felson DT, Zhang Y, Hannan MT Anderson JJ. Effects of weight and body mass index on bone meineral density in men and women: The Framingham Study. J BoneMiner Res 1993;8:567–573.

    Google Scholar 

  77. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: Multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J Clin Endocrinol Metab 1999;84:3686–3695.

    Google Scholar 

  78. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA, O'Rahilly S. Brief report: Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999; 341:879–884.

    Google Scholar 

  79. Thomas T, Burguera B, Melton LJ, Atkinson EJ, Riggs BL, Khosla S. Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone [In press.]

  80. Campfield LA, Smith FJ. Overview: Neurobiology of OB protein leptin. Proc Nutr Soc 1998;57:429–440.

    Google Scholar 

  81. Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B, Hunt P, Mc-Camish M. Recombinant leptin for weight loss in obese and lean adults: A randomized, controlled, dose-escalation trial. JAMA 1999;282:1568–1575.

    Google Scholar 

  82. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA, O'Rahilly S. Brief report: Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999; 341:879–884.

    Google Scholar 

  83. Lau D, Lubina J, Dixon RM, et al. 1998 Pharmacokinetics of recombinant human methionyl human leptin (rL) and the effect of antibody formation in lean and obese subjects following subcutaneous (sc) dosing. Proc of the 8th International Congress on Obesity, Paris, France NO PAGE # S

  84. Meyers F, Paradise C, Scudder S, et al. A phase I study including pharmacokinetics of polyethylene glycol conjugated interleukin-2. Clin Pharmacol Ther 1991;49:307–313.

    Google Scholar 

  85. Hukshorn CJ, Saris, WHM, Westerterp-Plantenga MS, Farid AR, Smith FJ, Campfield LA. Weekly subcutaneous pegylated recombinant native human leptin (PEG-OB) administration in obese men. J Clin Endocrinol Metab 2000; 85:4003–4009.

    Google Scholar 

  86. Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougneres P, Lebouc Y, Froguel P, Guy-Grand B. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998;392:398–401.

    Google Scholar 

  87. Woods SC, Seeley RJ, Porte D Jr, Schwartz MW. Signals that regulate food intake and energy homeostasis. Science 1998;280:1378–1383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Couce, M.E., Green, D., Brunetto, A. et al. Limited Brain Access for Leptin in Obesity. Pituitary 4, 101–110 (2001). https://doi.org/10.1023/A:1012951214106

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012951214106

Navigation