Skip to main content
Log in

A PCR-based assay to detect En/Spm-like transposon sequences in plants

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Degenerate primers deduced from the TPase region of plant En/Spm-like transposons allowed the amplification of similar sequences from various plant species including sugar beet, wheat and pea. These primers are efficient tools for the detection of this family of transposons in many plant genomes irrespective of sequence knowledge or phenotypic pecularities. An efficient PCR assay was therefore developed for these class II transposons, similar to assays already available for Ty1-copia-, Ty3-gypsy- or LINEs. This approach allowed us not only to show the widespread almost-ubiquitous presence of En/Spm-elements in plant genomes, but also to characterize their genomic organization and chromosomal distribution in the genome of chickpea (Cicer arietinum L.) and its abundance in related Cicer species. This approach can be used for the detection and characterization of endogenous DNA transposable elements in plant species, their complete isolation and evaluation of their use for genome analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal A, Eastmann Q, Schatz D (1998) Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744-751.

    Google Scholar 

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215: 403-410.

    Google Scholar 

  • Bennetzen J (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42: 251-269.

    Google Scholar 

  • Chopra S, Brendel V, Zhang J, Axtell DA, Peterson T (1990) Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable elements from Sorghum bicolor. Proc Natl Acad Sci USA 96: 15330-15335.

    Google Scholar 

  • Clark J, Kim P, Kidwell M (1998) Molecular evolution of P transposable elements in the genus Drosophila. III. The melanogaster species group. Mol Biol Evol 15: 746-755.

    Google Scholar 

  • Coelho P, Quieroz-Machado J, Hartl D, Sukel C (1998) Pattern of chromosomal localization of the hoppel transposable element family in the Drosophila melanogaster subgroup. Chromosome Res 6: 385-395.

    Google Scholar 

  • Devine S, Bocke J (1994) Efficient integration of artificial transposons into plasmid targets in vitro: a useful tool for DNA mapping, sequencing and genetic analysis. Nucl Acids Res 22: 3765-3772.

    Google Scholar 

  • Fedoroff N (1999) The Suppressor-mutator element and the evolutionary riddle of transposons. Genes Cells 4: 11-19.

    Google Scholar 

  • Fedoroff N (2000) Transposons and genome evolution in plants. Proc Natl Acad Sci USA 97: 7002-7007.

    Google Scholar 

  • Fedoroff N, Furek D, Nelson O (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable element Activator (Ac). Proc Natl Acad Sci USA 83: 3825-3829.

    Google Scholar 

  • Fedoroff N, Schläppli M, Raina R (1995) Epigenetic regulation of the maize Spm transposon. BioEssays 17: 291-297.

    Google Scholar 

  • Flavell A, Smith D, Kumar A (1992) Extreme heterogeneity of Ty-copia group retrotransposons in plants. Mol Gen Genet 231: 233-242.

    Google Scholar 

  • Frey M, Stettner C, Gierl A (1998) A general method for gene isolation in tagging approaches: amplification of insertion mutagenized sites (AIMS). Plant J 13: 717-721.

    Google Scholar 

  • Gierl A (1996) The En/Spm transposable element of maize. Curr Topics Microbiol Immunol 204: 145-159.

    Google Scholar 

  • Girard L, Freeling M (1999) Regulatory changes as a consequence of transposon insertion. Dev Genet 25: 291-296.

    Google Scholar 

  • Gray Y (2000) It takes two transposons to tango. Trends Genet 16: 461-468.

    Google Scholar 

  • He ZH, Dong HT, Dong JX, Li DB, Ronald PC (2000) The rice Rim2 transcript accumulates in response to Magnapor the grisea and its predicted protein product shares similarity with TNP2-like proteins encoded by CACTA transposons. Mol Gen Genet 264: 2-10.

    Google Scholar 

  • Henk A, Warren R, Innes R (1999) A new Ac-like transposon of Arabidopsis is associated with a deletion of the RPS5 disease resistance gene. Genetics 151: 1581-1589.

    Google Scholar 

  • Higgins D, Sharp P (1988) CLUSTAL: a package for performing multiple sequence alignments on a microcomputer. Genet 73: 237-244.

    Google Scholar 

  • Houck M, Clark J, Peterson K, Kidwell M (1991) Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis. Science 253: 1125-1128.

    Google Scholar 

  • Iwamoto M, Nagashima H, Nagamine T, Higo H, Higo K (1999) A Tourist element in the 5′ flanking region of the catalase gene CatA reveals evolutionary relationships among Oryza species with various genome types. Mol Gen Genet 262: 493-500.

    Google Scholar 

  • Kishima Y, Yamashita S, Martin C, Mikami T (1999) Structural conservation of the transposon Tam3 family in Antirrhinum majus and estimation of the number of copies able to transpose. Plant Mol Biol 39: 299-308.

    Google Scholar 

  • Kubis S, Heslop-Harrison J, Desel C, Schmidt T (1998) The genomic organization of non-LTR retrotransposons (LINEs) from three Beta species and five other angiosperms. Plant Mol Biol 36: 821-831.

    Google Scholar 

  • Kunze R, Sacdler H, Lönnig W (1997) Plant transposable elements. Adv Bot Res 27: 332-470.

    Google Scholar 

  • Le Q, Wright S, Yu Z, Bureau T (2000) Transposon diversity in Arabidopsis thaliana. Proc Natl Acad Sci USA 97: 7376-7381.

    Google Scholar 

  • Levy AA, Walbot V (1990) Regulation of the timing of transposable element excision during maize development. Science 248: 1535-1537.

    Google Scholar 

  • Luck J, Lawrence G, finnegan E, Jones D, Ellis G (1998) A flax transposon identified in two spontaneous mutant alleles of the L6 rust resistance gene. Plant J 16: 365-369.

    Google Scholar 

  • Maes T, De Keukeleire P, Gerats T (1999) Plant tagnology. Trends Plant Sci 4: 90-96.

    Google Scholar 

  • Mandrioli M (2000) Mariner-like transposable elements are interspersed within rDNA-associated heterochromatin of the pufferfish Tetraodon fluviatilis (Osteichthyes). Chromosome Res 8: 177-179.

    Google Scholar 

  • May B, Dellaporta S (1998) Transposon sequences drive tissue-specific expression of the maize regulatory gene R-s. Plant J 13: 241-247.

    Google Scholar 

  • McClintock B (1954) Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Inst Washington Year Book 53: 254-260.

    Google Scholar 

  • Meinkoth J, Wahl G (1984) Hybridization of nucleic acids immobilized on solid supports. Anal Biochem 138: 267-284.

    Google Scholar 

  • Miller W, Mcdonald J, Pinsker W (1997) Molecular domestication of mobile elements. Genetica 100: 261-270.

    Google Scholar 

  • Nacken W, Pietrowiak R, Saedler H, Sommer H (1991) The transposable element Tam1 from Antirrhinum majus shows structural homology to the maize transposon En/Spm and has no sequence specifity of insertion. Mol Gen Genet 228: 201-208.

    Google Scholar 

  • Ozeki Y, Davies E, Takeda J (1997) Somatic variation during long term subculturing of plant cells caused by insertion of a transposable element in a phenylalanine ammonia lyase (PAL) gene. Mol Gen Genet 254: 407-416.

    Google Scholar 

  • Page R (1996) Treeview: An application to display phylogenetic tress on personal computers. Computer Applications in Biosciences 12: 357-358.

    Google Scholar 

  • Pelissier T, Tutois S, Deragon JM, Tourmente S, Genestier S, Picard G (1995) Athila, a new retroelement from Arabidopsis thaliana. Plant Mol Biol 29: 441-452.

    Google Scholar 

  • Pereira A, Guypers H, Gierl A, Schwarz-Sommer Z, Saedler H (1986) Molecular analysis of the En/Spm transposable element system in Zea mays. EMBO J 5: 835-841.

    Google Scholar 

  • Peterson P A (1953) A mutable pale green locus in maize. Genetics 45: 115-133.

    Google Scholar 

  • Rhodes P, Vodkin L (1988) Organization of the Tgm family of transposable elements in soybean. Genetics 120: 597-604.

    Google Scholar 

  • Robertson H, Lampe D (1995) Recent horizontal transfer of a mariner transposable element among and between Diptera and Neutroptera. Mol Biol Evol 12: 850-862.

    Google Scholar 

  • Rose, t, Schultz E, Henikoff J, Pietrokovski S, McCallum C, Henikoff S (1998) Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucl Acids Res 26: 1628-1635.

    Google Scholar 

  • Saghai-Maroof M, Soliman K, Jorgensen R, Allard R (1984) Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal localization and population dynamics. Proc Natl Acad Sci USA 81: 8014-8018.

    Google Scholar 

  • Schmidt T, Schwarzacher T, Heslop-Harrison J S (1994) Physical mapping of rRNA genes by fluorescent in-situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). Theor Appl Genet 88: 629-636.

    Google Scholar 

  • Shirsat A (1988) A transposon-like structure in the 5′ flanking sequence of the legumin gene from Pisum sativum. Mol Gen Genet 212: 129-133.

    Google Scholar 

  • Snowden K, Napoli C (1998) PsI: a novel Spm-like transposable element from Petunia hybrida. Plant J 14: 43-54.

    Google Scholar 

  • Staginnus C Winter P, Desel C, Schmidt T, Kahl G (1999) Molecular structure and chromosomal localization of major repetitive DNA families in the chickpea (Cicer arietinum L.) genome. Plant Mol Biol 39: 1037-1050.

    Google Scholar 

  • Sundaresan V (1996) Horizontal spread of transposon mutagenesis: new uses for old elements. Trends Plants Sci 1: 184-190.

    Google Scholar 

  • Suoniemi A, Taskanen J, Schulman A (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13: 699-705.

    Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.

    Google Scholar 

  • Tissier A, Marillonnet S, Klimyuk V et al. (1999) Multiple independent defective Suppressor-mutator transposon insertions in Arabidopsis; a tool for functional genomics. Plant Cell 11: 1841-1852.

    Google Scholar 

  • Van den Broeck D, Maes T, Sauer M et al. (1998) Transposon display identifies individual transposable elements in high copy number lines. Plant J 13: 121-129.

    Google Scholar 

  • Walbot V (2000) Saturation mutagenesis using maize transposons. Curr Opin Plant Biol 3: 103-107.

    Google Scholar 

  • Wright D, Ke N, Smalle J, Hauge B, Goodman H, Voytas D (1996) Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. Genetics 142: 569-578.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staginnus, C., Huettel, B., Desel, C. et al. A PCR-based assay to detect En/Spm-like transposon sequences in plants. Chromosome Res 9, 591–605 (2001). https://doi.org/10.1023/A:1012455520353

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012455520353

Navigation