Skip to main content
Log in

Effects of Cholecystokinin Octapeptide on a Pancreatic Acinar Carcinoma in the Rat

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To investigate the effects of increasing concentrations of cholecystokinin octapeptide (CCK-8) on a pancreatic acinar adenocarcinoma.

Methods. Growth of the tumour was estimated in vivo on rats bearing a subcutaneous pancreatic carcinoma, and in vitro on primary cultured tumour cells. CCK receptors were characterized by binding assays.

Results. CCK-8, administered for 12 successive days, exerted a biphasic action on tumour growth: a dose-dependent stimulation with low doses (0.1 and 0.5 μg/kg) and inhibition with high doses (2 and 4 μg/ kg) as shown by respective increases and decreases in tumor volume, protein, RNA and amylase contents. In cell cultures, [3H]thymidine incorporation was dose-dependently increased with 10−10 to 10−8 M CCK-8 and inhibited with 10−7 M. Both effects were completely suppressed by the CCK-receptor antagonists CR 1409 and L 364,718 (10−4 M). Binding studies showed the overexpression of two classes of CCK-A receptors of low and high affinity when compared to the normal pancreas which was less sensitive to CCK-8.

Conclusions. CCK-8 exerts a biphasic growth response on the acinar pancreatic carcinoma, mediated by two classes of CCK-A receptors overexpressed in the tumour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Hajri, M. Aprahamian, and C. Damgé. Effect of a new CCK-receptor antagonist, CR 1409, on pancreatic growth induced by caerulein, CCK-8, bombesin and gastrin-releasing peptide in the rat. Regul. Pept. 43:66–72 (1989).

    Google Scholar 

  2. L. Karsenty, A. Hajri, M. Aprahamian, J. C. Garaud, M. Doffoël, and C. Damgé. Inhibition of growth of transplanted rat pancreatic acinar carcinoma with CCK-8. Pancreas 8:204–211 (1993).

    Google Scholar 

  3. M. Meijers, A. van Garderen-Hoetmer, C. B. Lamers, L. C. Rovati, J. B. Jansen, and R. A. Woutersen. Effects of the synthetic trypsin inhibitor camostate on the development of N-nitrosobis (2-oxy-propyl) amine-induced pancreatic lesions in hamsters. Cancer Lett. 60:205–211 (1991).

    Google Scholar 

  4. S. P. Povoski, W. Zhou, D. S. Longnecker, R. T. Jensen, S. A. Mantey, and R. H. Bell Jr. Stimulation of in vivo pancreatic growth in the rat is mediated specifically by the way of cholecystokinin-A receptors. Gastroenterology 107:1135–1146 (1994).

    Google Scholar 

  5. J. R. Wisner, R. E. Mc Laughlin, K. A. Rich, S. Ozawa, and I. G. Renner. Effects of L-364,718, a new cholecystokinin receptor antagonist, on camostate-induced growth of the rat pancreas. Gastroenterology 94:109–113 (1988).

    Google Scholar 

  6. M. Chu, J. F. Rehfeld, and K. Borch. Chronic endogenous hypercholecystokinemia promotes pancreatic carcinogenesis in the hamster. Carcinogenesis 18:315–320 (1997).

    Google Scholar 

  7. D. S. Longnecker, B. D. Roebuck, J. D. Yager, H. S. Lilja, and B. Siegmund. Pancreatic carcinoma in azaserine-treated rats: Induction, classification and dietary modulation of incidence. Cancer 47:1562–1572 (1981).

    Google Scholar 

  8. A. G. Howatson and D. C. Carter. Pancreatic carcinogenesis-enhancement by cholecystokinin in the hamster nitrosamine-model. Br. J. Cancer 51:107–114 (1985).

    Google Scholar 

  9. F. E. Johnson, M. C. La Regina, S. A. Martin, and H. M. Bashiti. Cholecystokinin inhibits pancreatic and hepatic carcinogenesis. Cancer Detect. Prev. 6:389–402 (1983).

    Google Scholar 

  10. A. Andrén-Sandberg, S. Dawiskiba, and I. Ihse. Studies on the effect of caerulein administration on experimental pancreatic carcinogenesis. Scand. J. Gastroenterol. 19:122–128 (1984).

    Google Scholar 

  11. J. P. Smith, T. E. Solomon, S. Bagheri, and S. Kramer. Cholecystokinin stimulates growth of human pancreatic carcinoma SW-1990. Dig. Dis. Sci. 35:1377–1384 (1990).

    Google Scholar 

  12. C. M. Townsend Jr, R. B. Franklin, L. C. Watson, E. J. Glass, and J. C. Thompson. Stimulation of pancreatic cancer growth by caerulein and secretin. Surg. Forum 32:228–229 (1981).

    Google Scholar 

  13. C. Hudd, M. C. La Regina, J. E. Devine, D. C. Palmer, D. R. Herbold, M. C. Beinfeld, F. B. Gelder, and F. E. Johnson. Response to exogenous cholecystokinin of six human gastrointestinal cancers xenografted in nude mice. Am. J. Surg. 157:386–394 (1989).

    Google Scholar 

  14. R. Maani, C. M. Townsend, G. Gomez, J. C. Thompson, and P. Singh. A potent CCK receptor antagonist (L 364,718) inhibits growth of human pancreatic cancer in nude mice [Abstract]. Gastroenterology 94:A274 (1988).

    Google Scholar 

  15. B. R. Douglas, R. A. Woutersen, J. B. M. J. Jansen, A. J. L. De Jong, L. C. Rovati, and C. B. H. W. Lamers. Influence of cholecystokinin antagonist on the effects of cholecystokinin and bombesin on azaserine-induced lesions in rat pancreas. Gastroenterology 96:462–469 (1989).

    Google Scholar 

  16. E. F. Lhoste, B. D. Roebuck, and D. S. Longnecker. Stimulation of the growth of azaserine-induced nodules in the rat pancreas by dietary camostate (FOY305). Carcinogenesis 9:901–909 (1988).

    Google Scholar 

  17. M. Meijers, M. J. Appel, A. van Garderen-Hoetmer, C. B. Lamers, L. C. Rovati, J. B. Jansen, and R. A. Woutersen. Effects of cholecystokinin and bombesin on development of azaserine-induced pancreatic tumours in rats: modulation by the cholecystokinin receptor antagonist lorglumide. Carcinogenesis 13:1525–1528 (1992).

    Google Scholar 

  18. T. P. O'Connor, B. D. Roebuck, and T. C. Campbell. Dietary intervention during the postdosing phase of L-azaserine-induced preneoplastic lesions. J. Natl. Cancer Inst. 75:955–957 (1985).

    Google Scholar 

  19. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275 (1951).

    Google Scholar 

  20. A. Danielsson. Technique for measuring amylase secretion from pieces of mouse pancreas. Anal. Biochem. 59:220–234 (1974).

    Google Scholar 

  21. G. M. Richards. Modifications of the diphenylamine reaction giving increased sensitivity and simplicity in the estimation of DNA. Anal. Biochem. 57:369–376 (1974).

    Google Scholar 

  22. W. C. Schneider. Determination of nucleic acids in tissues by pentose analysis. In: S. P. Colowick and N. O. Kaplan (eds), Methods of enzymology, New York: Academic Press, 1957, pp. 680–684.

    Google Scholar 

  23. A. Hajri, C. Bruns, P. Marbach, M. Aprahamian, D. S. Longnecker, and C. Damgé. Inhibition of the growth of transplanted rat pancreatic acinar carcinoma with octreotide. Eur. J. Cancer 27:1247–1252 (1991).

    Google Scholar 

  24. C. Stock-Damgé, M. Aprahamian, E. Lhoste, J. Marescaux, and E. Loza. Small bowel bypass prevents the trophic action of cholecystokinin on the rat pancreas. Int. J. Pancreatol. 2:257–267 (1987).

    Google Scholar 

  25. R. H. Bell Jr, E. T. Kuhlmann, R. T. Jensen, and D. S. Longnecker. Overexpression of cholecystokinin receptors in azaserine-induced neoplasms of the rat pancreas. Cancer Res. 52:3295–3299 (1992).

    Google Scholar 

  26. W. Zhou, S. P. Povoski, D. S. Longnecker, and R. H. Bell Jr. Novel expression of gastrin (cholecystokinin-B) receptors in azaserine-induced rat pancreatic carcinoma: receptor determination and characterization. Cancer Res. 52:6905–6911 (1992).

    Google Scholar 

  27. J. L. Scemama, D. Fourmy, A. Zahidi, L. Pradayrol, C. Susini, and A. Ribet. Characterization of gastrin receptors on a rat pancreatic acinar cell line (AR4-2J). A possible model for studying gastrin mediated cell growth and proliferation. Gut 28:233–236 (1987).

    Google Scholar 

  28. C. Seva, L. De Vries, J. L. Scemama, P. Sarfati, T. G. Nicolet, L. Pradayrol, and N. Vaysse. Gastrin modulates growth of a rat acinar pancreatic cell line: receptor analysis and signal transduction. Digestion 46(suppl 2):166–169 (1990).

    Google Scholar 

  29. S. P. Povoski, W. Zhou, D. S. Longnecker, B. D. Roebuck, and R. H. Bell Jr. Stimulation of growth of azaserine-induced putative preneoplastic lesions in rat pancreas is mediated specifically by way of cholecystokinin-A receptors. Cancer Res. 53:3925–3929 (1993).

    Google Scholar 

  30. B. J. Tsuei, S. P. Povoski, W. Zhou, and R. H. Bell Jr. Gastrin receptor expression during azaserine-induced rat pancreatic carcinogenesis. J. Surg. Res. 63:105–109 (1996).

    Google Scholar 

  31. D. H. Yu, S. C. Huang, S. A. Wank, S. Mantey, J. D. Gardner, and R. T. Jensen. Pancreatic receptors for cholecystokinin: evidence for three receptor classes. Am. J. Physiol. 258:G86–95 (1990).

    Google Scholar 

  32. D. S. Louie, J. P. Liang, and C. Owyang. Characterization of a new CCK antagonist, L 364,718: in vitro and in vivo studies. Am. J. Physiol. 255:G261–266 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajri, A., Damgé, C. Effects of Cholecystokinin Octapeptide on a Pancreatic Acinar Carcinoma in the Rat. Pharm Res 15, 1767–1774 (1998). https://doi.org/10.1023/A:1011973015634

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011973015634

Navigation