Skip to main content
Log in

Pharmacodynamics and Toxicodynamics of Drug Action: Signaling in Cell Survival and Cell Death

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

In therapeutic response to drugs, the plasma concentration range leads to the establishment of a safe and effective dosage regimen. Our hypothesis is that by studying drug concentration-dependent effect on signal transduction mechanisms, a better understanding of the beneficial pharmacodynamic and adverse toxicodynamic responses elicited by the drug may be achieved. Using two classes of chemopreventive compounds (phenolic antioxidants and isothiocyanates), we illustrate the potential utility of two signal transduction pathways elicited by these agents to predict the pharmacodynamic effect (induction of Phase II drug metabolizing enzymes) and the potential toxicodynamic response (stimulation of caspase activity and cytotoxic cell death). At lower concentration, phenolic antioxidants and isothiocyanates activate mitogen-activated protein kinase (MAPK; extracellular signal-regulated protein kinase 2, ERK2; and c-Jun N-terminal kinase 1, JNK1) in a concentration-and time-dependent manner. The activation of MAPK by these compounds may lead to the induction of cell survival/protection genes such as c-jun, c-fos, or Phase II drug metabolizing enzymes. However, at higher concentrations, these agents activate another signaling molecule, ICE/Ced3 cysteine protease enzymes (caspases) leading to apoptotic cell death. The activation of these pathways may dictate the fate of the cells/tissues upon exposure to drugs or chemicals. At lower concentrations, these compounds activate MAPK leading to the induction of Phase II genes, which may protect the cells/tissues against toxic insults and therefore may enhance cell survival. On the other hand, at higher concentrations, these agents may activate the caspases, which may lead to apoptotic cell death, and have toxicity. Understanding the activation of these and other signal transduction events elicited by various drugs and chemicals may yield insights into the regulation of gene expression of drug metabolizing enzymes and cytotoxicity. Thus, the study of signaling events in cell survival (hemeostasis) and cell death (cytotoxicity) may have practical application during pharmaceutical drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. W. Nebert and F. J. Gonzalez. P450 genes: structure, evolution, and regulation. Annu. Rev. Biochem. 56:945–93 (1987).

    Google Scholar 

  2. D. R. Nelson, T. Kamataki, D. J. Waxman, F. P. Guengerich, R. W. Estabrook, R. Feyereisen, F. J. Gonzalez, M. J. Coon, I. C. Gunsaius, O. Gotoh, and et al. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell. Biol. 12:1–51 (1993).

    Google Scholar 

  3. T. Rushmore, C. B. Pickett, and A. Y. H. Lu. Regulation of expression of rat liver glutathione S-transferases: Xenobiotic and antioxidant induction of the Ya subunit gene. Springer-Verlag, Berlin Heidelberg (1994).

    Google Scholar 

  4. A. K. Jaiswal. Jun and Fos regulation of NAD(P)H: quinone oxidoreductase gene expression. Pharmacogenetics 4:1–10 (1994).

    Google Scholar 

  5. K. P. Vatsis, W. W. Weber, D. A. Bell, J. M. Dupret, D. A. Evans, D. M. Grant, D. W. Hein, H. J. Lin, U. A. Meyer, M. V. Relling, and et al. Nomenclature for N-acetyltransferases. Pharmacogenetics 5:1–17 (1995).

    Google Scholar 

  6. T. Guenthner. Epoxide hydrolase. Taylor & Francis, London, Conjugation reactions in drug metabolism (1990).

    Google Scholar 

  7. R. M. Weinshilboum, D. M. Otterness, I. A. Aksoy, T. C. Wood, C. Her, and R. B. Raftogianis. Sulfation and sulfotransferases I: Sulfotransferase molecular biology: cDNAs and genes. Faseb J 11:3–14 (1997).

    Google Scholar 

  8. P. I. Mackenzie, I. S. Owens, B. Burchell, K. W. Bock, A. Bairoch, A. Belanger, S. Fournel-Gigleux, M. Green, D. W. Hum, T. Iyanagi, D. Lancet, P. Louisot, J. Magdalou, J. R. Chowdhury, J. K. Ritter, H. Schachter, T. R. Tephly, K. F. Tipton, and D. W. Nebert. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7:255–69 (1997).

    Google Scholar 

  9. J. V. Schmidt and C. A. Bradfield. Ah receptor signaling pathways. Annu. Rev. Cell. Dev. Biol. 12:55–89 (1996).

    Google Scholar 

  10. B. Kemper. Regulation of cytochrome P450 gene transcription by phenobarbital [In Process Citation]. Prog. Nucleic Acid Res. Mol. Biol. 61:23–64 (1998).

    Google Scholar 

  11. S. A. Wrighton, P. Maurel, E. G. Schuetz, P. B. Watkins, B. Young, and P. S. Guzelian. Identification of the cytochrome P-450 induced by macrolide antibiotics in rat liver as the glucocorticoid responsive cytochrome P-450p. Biochemistry 24:2171–8 (1985).

    Google Scholar 

  12. J. H. Parmentier, H. Schohn, M. Bronner, L. Ferrari, A. M. Batt, M. Dauca, and P. Kremers. Regulation of CYP4A1 and peroxisome proliferator-activated receptor alpha expression by interleukin-1 beta, interleukin-6, and dexamethasone in cultured fetal rat hepatocytes. Biochem. Pharmacol. 54:889–98 (1997).

    Google Scholar 

  13. K. Schoonjans, G. Martin, B. Staels, and J. Auwerx. Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr. Opin. Lipidol. 8:159–66 (1997).

    Google Scholar 

  14. H. J. Prochaska and P. Talalay. Regulatory mechanisms of monofunctional and bifunctional anticarcinogenic enzyme inducers in murine liver. Cancer Res. 48:4776–82 (1988).

    Google Scholar 

  15. R. S. Friling, A. Bensimon, Y. Tichauer, and V. Daniel. Xenobiotic-inducible expression of murine glutathione S-transferase Ya subunit gene is controlled by an electrophile-responsive element. Proc Natl. Acad. Sci. USA 87:6258–62 (1990).

    Google Scholar 

  16. K. S. Yao and O. D. PJ. Involvement of NF-kappa B in the induction of NAD(P)H:quinone oxidoreductase (DT-diaphorase) by hypoxia, oltipraz and mitomycin C. Biochem. Pharmacol. 49:275–82 (1995).

    Google Scholar 

  17. R. Pinkus, L. M. Weiner, and V. Daniel. Role of oxidants and antioxidants in the induction of AP-1, NF-kappaB, and glutathione S-transferase gene expression. J. Biol. Chem. 271:13422–9 (1996).

    Google Scholar 

  18. T. M. Buetler, E. P. Gallagher, C. Wang, D. L. Stahl, J. D. Hayes, and D. L. Eaton. Induction of phase I and phase II drug-metabolizing enzyme mRNA, protein, and activity by BHA, ethoxyquin, and oltipraz. Toxicol. Appl. Pharmacol. 135:45–57 (1995).

    Google Scholar 

  19. H. G. Shertzer, V. Vasiliou, R. M. Liu, M. W. Tabor, and D. W. Nebert. Enzyme induction by L-buthionine (S,R)-sulfoximine in cultured mouse hepatoma cells. Chem. Res. Toxicol. 8:431–6 (1995).

    Google Scholar 

  20. R. Yu, J. J. Jiao, J. L. Duh, T. H. Tan, and A. N. T. Kong. Phenethyl isothiocyanate, a natural chemopreventive agent, activates c-Jun N-terminal kinase 1. Cancer Res. 56:2954–9 (1996).

    Google Scholar 

  21. R. Yu, J. J. Jiao, J. L. Duh, K. Gudehithlu, T. H. Tan, and A. N. T. Kong. Activation of mitogen-activated protein kinases by green tea polyphenols: potential signaling pathways in the regulation of antioxidant-responsive element-mediated phase II enzyme gene expression. Carcinogenesis 18:451–6 (1997).

    Google Scholar 

  22. R. Yu, T.-H. Tan, and A.-N. T. Kong. Butylated hydroxyanisol and its metabolite tert-butylhydroquinone differentially regulate mitogen-activated protein kinases: The role of oxidative stress in the activation of mtiogen-activated protein kinases by phenolic antioxidants. J. Biol. Chem. 272:28962–28970 (1997).

    Google Scholar 

  23. E. Ainbinder, S. Bergelson, and V. Daniel. Signaling pathways in the induction of c-fos and c-jun proto-oncogenes by 3-methyl-cholanthrene. Recept. Signal Transduct. 7:279–89 (1997).

    Google Scholar 

  24. M. Karin. Mitogen-activated protein kinase cascades as regulators of stress responses. Ann. N. Y. Acad. Sci. 851:139–46 (1998).

    Google Scholar 

  25. H. D. Madhani and G. R. Fink. The riddle of MAP kinase signaling specificity. Trends Genet. 14:151–5 (1998).

    Google Scholar 

  26. M. H. Cobb and E. J. Goldsmith. How MAP kinases are regulated. J. Biol. Chem. 270:14843–6 (1995).

    Google Scholar 

  27. C. J. Marshall. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet. Dev. 4:82–9 (1994).

    Google Scholar 

  28. E. Cano and L. C. Mahadevan. Parallel signal processing among mammalian MAPKs. Trends Biochem. Sci. 20:117–22 (1995).

    Google Scholar 

  29. J. M. Kyriakis and J. Avruch. Protein kinase cascades activated by stress and inflammatory cytokines. Bioessays 18:567–77 (1996).

    Google Scholar 

  30. E. Y. Skolnik, C. H. Lee, A. Batzer, L. M. Vicentini, M. Zhou, R. Daly, M. J. Myers, Jr., J. M. Backer, A. Ullrich, M. F. White, and et al. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. Embo J. 12:1929–36 (1993).

    Google Scholar 

  31. S. E. Egan, B. W. Giddings, M. W. Brooks, L. Buday, A. M. Sizeland, and R. A. Weinberg. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature 363:45–51 (1993).

    Google Scholar 

  32. D. Stokoe, S. G. Macdonald, K. Cadwallader, M. Symons, and J. F. Hancock. Activation of Raf as a result of recruitment to the plasma membrane. Science 264:1463–7 (1994).

    Google Scholar 

  33. B. M. Burgering and J. L. Bos. Regulation of Ras-mediated signalling: more than one way to skin a cat. Trends Biochem. Sci. 20:18–22 (1995).

    Google Scholar 

  34. M. Hibi, A. Lin, T. Smeal, A. Minden, and M. Karin. Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 7:2135–48 (1993).

    Google Scholar 

  35. J. M. Kyriakis, P. Banerjee, E. Nikolakaki, T. Dai, E. A. Rubie, M. F. Ahmad, J. Avruch, and J. R. Woodgett. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–60 (1994).

    Google Scholar 

  36. J. Raingeaud, S. Gupta, J. S. Rogers, M. Dickens, J. Han, R. J. Ulevitch, and R. J. Davis. Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J. Biol. Chem. 270:7420–6 (1995).

    Google Scholar 

  37. R. Yu, A. A. Shtil, T. H. Tan, I. B. Roninson, and A. N. T. Kong. Adriamycin activates c-jun N-terminal kinase in human leukemia cells: a relevance to apoptosis. Cancer Lett. 107:73–81 (1996).

    Google Scholar 

  38. E. Cano, C. A. Hazzalin, and L. C. Mahadevan. Anisomycin-activated protein kinases p45 and p55 but not mitogen-activated protein kinases ERK-1 and-2 are implicated in the induction of c-fos and c-jun. Mol. Cell. Biol. 14:7352–62 (1994).

    Google Scholar 

  39. S. Spiegel, D. Foster, and R. Kolesnick. Signal transduction through lipid second messengers. Curr. Opin. Cell Biol. 8:159–67 (1996).

    Google Scholar 

  40. Y. R. Chen, X. Wang, D. Templeton, R. J. Davis, and T. H. Tan. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J. Biol. Chem. 271:31929–36 (1996).

    Google Scholar 

  41. Y. R. Chen, C. F. Meyer, and T. H. Tan. Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis. J. Biol. Chem. 271:631–4 (1996).

    Google Scholar 

  42. J. Han, J. D. Lee, L. Bibbs, and R. J. Ulevitch. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–11 (1994).

    Google Scholar 

  43. J. L. Brewster, T. de Valoir, N. D. Dwyer, E. Winter, and M. C. Gustin. An osmosensing signal transduction pathway in yeast. Science 259:1760–3 (1993).

    Google Scholar 

  44. J. C. Lee, J. T. Laydon, P. C. McDonnell, T. F. Gallagher, S. Kumar, D. Green, D. McNulty, M. J. Blumenthal, J. R. Heys, S. W. Landvatter, and et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–46 (1994).

    Google Scholar 

  45. J. Rouse, P. Cohen, S. Trigon, M. Morange, A. Alonso-Llamazares, D. Zamanillo, T. Hunt, and A. R. Nebreda. A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell 78:1027–37 (1994).

    Google Scholar 

  46. N. W. Freshney, L. Rawlinson, F. Guesdon, E. Jones, S. Cowley, J. Hsuan, and J. Saklatvala. Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell 78:1039–49 (1994).

    Google Scholar 

  47. X. S. Wang, K. Diener, C. L. Manthey, S. Wang, B. Rosenzweig, J. Bray, J. Delaney, C. N. Cole, P. Y. Chan-Hui, N. Mantlo, H. S. Lichenstein, M. Zukowski, and Z. Yao. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J. Biol. Chem. 272:23668–74 (1997).

    Google Scholar 

  48. B. Derijard, J. Raingeaud, T. Barrett, I. H. Wu, J. Han, R. J. Ulevitch, and R. J. Davis. Independent human MAP-kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267:682–5 (1995).

    Google Scholar 

  49. T. Moriguchi, F. Toyoshima, Y. Gotoh, A. Iwamatsu, K. Irie, E. Mori, N. Kuroyanagi, M. Hagiwara, K. Matsumoto, and E. Nishida. Purification and identification of a major activator for p38 from osmotically shocked cells. Activation of mitogen-activated protein kinase kinase 6 by osmotic shock, tumor necrosis factor-alpha, and H2O2. J. Biol. Chem. 271:26981–8 (1996).

    Google Scholar 

  50. M. Karin. The regulation of AP-1 activity by mitogen-activated protein kinases. J. Biol. Chem. 270:16483–6 (1995).

    Google Scholar 

  51. H. S. Choi and D. D. Moore. Induction of c-fos and c-jun gene expression by phenolic antioxidants. Mol. Endocrinol. 7:1596–602 (1993).

    Google Scholar 

  52. Y. Li and A. K. Jaiswal. Regulation of human NAD(P)H:quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response element. J. Biol. Chem. 267:15097–104 (1992).

    Google Scholar 

  53. T. H. Rushmore and C. B. Pickett. Transcriptional regulation of the rat glutathione S-transferase Ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants. J. Biol. Chem. 265:14648–53 (1990).

    Google Scholar 

  54. T. Prestera, W. D. Holtzclaw, Y. Zhang, and P. Talalay. Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc. Natl. Acad. Sci. USA 90:2965–9 (1993).

    Google Scholar 

  55. P. Fei, G. A. Matwyshyn, T. H. Rushmore, and A. N. T. Kong. Transcription regulation of rat glutathione S-transferase Ya subunit gene expression by chemopreventive agents. Pharm. Res. 13:1043–8 (1996).

    Google Scholar 

  56. A. N. T. Kong, P. Fei, and B. K. Wong. Differential expression of the phenol family of UDP-glucuronosyltransferases in hepatoma cell lines. Pharm. Res. 12:309–12 (1995).

    Google Scholar 

  57. E. T. Hellriegel, G. A. Matwyshyn, P. Fei, K. H. Dragnev, R. W. Nims, R. A. Lubet, and A. N. Kong. Regulation of gene expression of various phase I and phase II drug-metabolizing enzymes by tamoxifen in rat liver. Biochem. Pharmacol. 52:1561–8 (1996).

    Google Scholar 

  58. V. L. Sparnins, J. Chuan, and L. W. Wattenberg. Enhancement of glutathione S-transferase activity of the esophagus by phenols, lactones, and benzyl isothiocyanate. Cancer Res. 42:1205–7 (1982).

    Google Scholar 

  59. Z. Guo, T. J. Smith, E. Wang, N. Sadrieh, Q. Ma, P. E. Thomas, and C. S. Yang. Effects of phenethyl isothiocyanate, a carcinogenesis inhibitor, on xenobiotic-metabolizing enzymes and nitrosamine metabolism in rats. Carcinogenesis 13:2205–10 (1992).

    Google Scholar 

  60. S. G. Khan, S. K. Katiyar, R. Agarwal, and H. Mukhtar. Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemoprevention. Cancer Res. 52:4050–2 (1992).

    Google Scholar 

  61. R. Yu, W. Lei, S. Mandlekar, J. Jiao, M. J. Weber, C. J. Der, and A.-N. T. Kong. Involvement of a mitogen-activated protein kinase in transcriptional activation of phase 2 detoxifying enzyme genes by tert-butylhydroquinone and sulforaphane. Submitted (1999).

  62. W. Lei, R. Yu, S. Mandlekar, and A. N. Kong. Induction of apoptosis and activation of interleukin 1 beta-converting enzyme/Ced-3 protease (caspase-3) and c-Jun NH2-terminal kinase 1 by benzo(a)pyrene. Cancer Res. 58:2102–6 (1998).

    Google Scholar 

  63. J. L. Duh, R. Yu, J. J. Jiao, G. A. Matwyshyn, W. Li, T. H. Tan, and A. N. T. Kong. Activation of signal transduction kinases by tamoxifen. Pharm. Res. 14:186–9 (1997).

    Google Scholar 

  64. S. Mandlekar, R. Yu, and A.-N. T. Kong. Pharmacodynamics of tamoxifen: Signal transduction in apoptosis. PharmSci. 1(Supplement): S-651 (1998).

    Google Scholar 

  65. A. Shtil, S. Mandlekar, R. Yu, R. J. Walter, K. Hagen, T. Tan, I. B. Roninson, and A.-N. T. Kong. Differential regulation of mitogen-activated protein kinases by microtubule-binding agents in human breast cancer cells. Oncogene 18:377–384 (1999).

    Google Scholar 

  66. A. Fasanmade, W. Lei, S. Mandlekar, and A.-N. T. Kong. DNA intercalated quinacrine and the dynamics of proliferative and apoptotic signaling in HeLa and PC-3 cancer cell lines. PharmSci. 1(Supplement):S-652 (1998).

    Google Scholar 

  67. R. Yu, S. Mandlekar, T.-H. Tan, and A.-N. T. Kong. The protein kinase C inhibitor, chelerythrine, is a potent activator of c-Jun N-terminal kinase and p38. Submitted for publication (1999).

  68. W. W. Wasserman and W. E. Fahl. Functional antioxidant responsive elements. Proc Natl Acad Sci USA 94:5361–6 (1997).

    Google Scholar 

  69. H. Ye, T. F. Kelly, U. Samadani, L. Lim, S. Rubio, D. G. Overdier, K. A. Roebuck, and R. H. Costa. Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues. Mol. Cell. Biol. 17:1626–41 (1997).

    Google Scholar 

  70. R. Yu, S. Mandlekar, W. Lei, W. E. Fahl, T.-H. Tan, and A.-N. T. Kong. p38 mitogen-activated protein kinase negatively regulates antioxidant response element-mediated gene expression. submitted for publication (1999).

  71. D. S. Ucker. Death and dying in the immune system. Academic Press, New York (1997).

    Google Scholar 

  72. Z. Darzynkiewicz, G. Juan, X. Li, W. Gorczyca, T. Murakami, and F. Traganos. Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry 27:1–20 (1997).

    Google Scholar 

  73. J. F. Kerr, A. H. Wyllie, and A. R. Currie. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239–57 (1972).

    Google Scholar 

  74. J. L. Au, N. Panchal, D. Li, and Y. Gan. Apoptosis: a new pharmacodynamic endpoint. Pharm. Res. 14:1659–71 (1997).

    Google Scholar 

  75. A. Ashkenazi and V. M. Dixit. Death receptors: signaling and modulation. Science 281:1305–8 (1998).

    Google Scholar 

  76. D. R. Green and J. C. Reed. Mitochondria and apoptosis. Science 281:1309–12 (1998).

    Google Scholar 

  77. N. A. Thornberry and Y. Lazebnik. Caspases: enemies within. Science 281:1312–6 (1998).

    Google Scholar 

  78. E. S. Alnemri, D. J. Livingston, D. W. Nicholson, G. Salvesen, N. A. Thornberry, W. W. Wong, and J. Yuan. Human ICE/CED-3 protease nomenclature. Cell 87:171 (1996).

    Google Scholar 

  79. M. J. Kostura, M. J. Tocci, G. Limjuco, J. Chin, P. Cameron, A. G. Hillman, N. A. Chartrain, and J. A. Schmidt. Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc. Natl. Acad. Sci. USA 86:5227–31 (1989).

    Google Scholar 

  80. N. P. Walker, R. V. Talanian, K. D. Brady, L. C. Dang, N. J. Bump, C. R. Ferenz, S. Franklin, T. Ghayur, M. C. Hackett, L. D. Hammill, and et al. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell 78:343–52 (1994).

    Google Scholar 

  81. N. A. Thornberry and S. M. Molineaux. Interleukin-1 beta converting enzyme: a novel cysteine protease required for IL-1 beta production and implicated in programmed cell death. Protein Sci. 4:3–12 (1995).

    Google Scholar 

  82. M. Miura, H. Zhu, R. Rotello, E. A. Hartwieg, and J. Yuan. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75:653–60 (1993).

    Google Scholar 

  83. P. Li, H. Allen, S. Banerjee, S. Franklin, L. Herzog, C. Johnston, J. McDowell, M. Paskind, L. Rodman, J. Salfeld, and et al. Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80:401–11 (1995).

    Google Scholar 

  84. T. Fernandes-Alnemri, G. Litwack, and E. S. Alnemri. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J. Biol. Chem. 269:30761–4 (1994).

    Google Scholar 

  85. M. Tewari, L. T. Quan, O. R. K. S. Desnoyers, Z. Zeng, D. R. Beidler, G. G. Poirier, G. S. Salvesen, and V. M. Dixit. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81:801–9 (1995).

    Google Scholar 

  86. D. W. Nicholson, A. Ali, N. A. Thornberry, J. P. Vaillancourt, C. K. Ding, M. Gallant, Y. Gareau, P. R. Griffin, M. Labelle, Y. A. Lazebnik, and et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43 (1995).

    Google Scholar 

  87. L. A. Casciola-Rosen, G. J. Anhalt, and A. Rosen. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med. 182:1625–34 (1995).

    Google Scholar 

  88. X. Liu, H. Zou, C. Slaughter, and X. Wang. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–84 (1997).

    Google Scholar 

  89. L. A. Casciola-Rosen, D. K. Miller, G. J. Anhalt, and A. Rosen. Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J. Biol. Chem. 269:30757–60 (1994).

    Google Scholar 

  90. S. Na, T. H. Chuang, A. Cunningham, T. G. Turi, J. H. Hanke, G. M. Bokoch, and D. E. Danley. D4-GD1, a substrate of CPP32, is proteolyzed during Fas-induced apoptosis. J. Biol. Chem. 271:11209–13 (1996).

    Google Scholar 

  91. R. Datta, H. Kojima, K. Yoshida, and D. Kufe. Caspase-3-mediated cleavage of protein kinase C theta in induction of apoptosis. J. Biol. Chem. 272:20317–20 (1997).

    Google Scholar 

  92. R. Hakem, A. Hakem, G. S. Duncan, J. T. Henderson, M. Woo, M. S. Soengas, A. Elia, J. L. de la Pompa, D. Kagi, W. Khoo, J. Potter, R. Yoshida, S. A. Kaufman, S. W. Lowe, J. M. Penninger, and T. W. Mak. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94:339–52 (1998).

    Google Scholar 

  93. Z. Xia, M. Dickens, J. Raingeaud, R. J. Davis, and M. E. Greenberg. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–31 (1995).

    Google Scholar 

  94. N. L. Johnson, A. M. Gardner, K. M. Diener, C. A. Lange-Carter, J. Gleavy, M. B. Jarpe, A. Minden, M. Karin, L. I. Zon, and G. L. Johnson. Signal transduction pathways regulated by mitogen-activated/extracellular response kinase kinase kinase induce cell death. J. Biol. Chem. 271:3229–37 (1996).

    Google Scholar 

  95. H. Seimiya, T. Mashima, M. Toho, and T. C. Tsuruo. Jun NH2-terminal kinase-mediated activation of interleukin-1 beta converting enzyme/CED-3-like protease during anticancer drug-induced apoptosis. J. Biol. Chem. 272:4631–6 (1997).

    Google Scholar 

  96. P. Juo, C. J. Kuo, S. E. Reynolds, R. F. Konz, J. Raingeaud, R. J. Davis, H. P. Biemann, and J. Blenis. Fas activation of the p38 mitogen-activated protein kinase signalling pathway requires ICE/CED-3 family proteases. Mol. Cell. Biol. 17:24–35 (1997).

    Google Scholar 

  97. M. Faris, N. Kokot, K. Latinis, S. Kasibhatla, D. R. Green, G. A. Koretzky, and A. Nel. The c-Jun N-terminal kinase cascade plays a role in stress-induced apoptosis in Jurkat cells by up-regulating Fas ligand expression. J. Immunol. 160:134–44 (1998).

    Google Scholar 

  98. D. B. Clayson, F. Iverson, E. A. Nera, and E. Lok. The significance of induced forestomach tumors. Annu. Rev. Pharmacol. Toxicol. 30:441–63 (1990).

    Google Scholar 

  99. T. Mizutani, H. Nomura, K. Nakanishi, and S. Fujita. Hepatotoxicity of butylated hydroxytoluene and its analogs in mice depleted of hepatic glutathione. Toxicol. Appl. Pharmacol. 87:166–76 (1987).

    Google Scholar 

  100. R. Yu, S. Mandlekar, and A.-N. T. Kong. Distinct roles of intracellular calcium in the activation of c-jun N-terminal kinases and caspases during apoptosis induced by phenolic antioxidant BHA. Toxicological Sciences (Formerly Fund. Appl. Tox.) 42(supplement): 356 (1998).

    Google Scholar 

  101. R. Yu, S. Mandelkar, K. J. Harvey, D. S. Ucker, and A.-N. T. Kong. Chemopreventive isothiocyanates induce apoptosis and caspase-3-like protease activity. Cancer Res. 58:402–408 (1998).

    Google Scholar 

  102. S. V. Lennon, S. J. Martin, and T. G. Cotter. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 24:203–14 (1991).

    Google Scholar 

  103. N. Sato, S. Iwata, K. Nakamura, T. Hori, K. Mori, and J. Yodoi. Thiol-mediated redox regulation of apoptosis. Possible roles of cellular thiols other than glutathione in T cell apoptosis. J. Immunol. 154:3194–203 (1995).

    Google Scholar 

  104. G. M. Ledda-Columbano, P. Coni, M. Curto, L. Giacomini, G. Faa, S. Oliverio, M. Piacentini, and A. Columbano. Induction of two different modes of cell death, apoptosis and necrosis, in rat liver after a single dose of thioacetamide. Am. J. Pathol. 139:1099–109 (1991).

    Google Scholar 

  105. J. M. Dypbukt, M. Ankarcrona, M. Burkitt, A. Sjoholm, K. Strom, S. Orrenius, and P. Nicotera. Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells. The role of intracellular polyamines. J. Biol. Chem. 269:30553–60 (1994).

    Google Scholar 

  106. D. S. Ucker. T-cell regulation. Tails of phosphorylation and T-cell activation. Curr. Biol. 4:947–9 (1994).

    Google Scholar 

  107. C. C. Goodnow, S. Adelstein, and A. Basten. The need for central and peripheral tolerance in the B cell repertoire. Science 248:1373–9 (1990).

    Google Scholar 

  108. J. W. Olney and L. G. Sharpe. Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science 166:386–8 (1969).

    Google Scholar 

  109. S. Rabacchi, Y. Bailly, N. Delhaye-Bouchaud, and J. Mariani. Involvement of the N-methyl D-aspartate (NMDA) receptor in synapse elimination during cerebellar development. Science 256:1823–5 (1992).

    Google Scholar 

  110. A.-N. T. Kong, R. Yu, W. Lei, S. Mandlekar, T.-H. Tan, and D. S. Ucker. Differential activation of MAPK and ICE/Ced-3 protease in chemical-induced apoptosis. The role of oxidative stress in the regulation of mitogen-activated protein kinases (MAPKs) leading to gene expression and cell survival or activation of caspases leading to apoptosis. Restor. Neurol. Neurosci. 12:63–70 (1998).

    Google Scholar 

  111. M. T. Osborn and T. C. Chambers. Role of the stress-activated/c-Jun NH2-terminal protein kinase pathway in the cellular response to adriamycin and other chemotherapeutic drugs. J. Biol. Chem. 271:30950–5 (1996).

    Google Scholar 

  112. M. M. Montano, A. K. Jaiswal, and B. S. Katzenellenbogen. Transcriptional regulation of the human quinone reductase gene by antiestrogen-liganded estrogen receptor-alpha and estrogen receptor-beta. J. Biol. Chem. 273:25443–9 (1998).

    Google Scholar 

  113. L. Salphati and L. Z. Benet. Modulation of P-glycoprotein expression by cytochrome P450 3A inducers in male and female rat livers. Biochem. Pharmacol. 55:387–95 (1998).

    Google Scholar 

  114. E. G. Schuetz, W. T. Beck, and J. D. Schuetz. Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol. Pharmacol. 49:311–8 (1996).

    Google Scholar 

  115. S. S. Thorgeirsson, T. W. Gant, and J. A. Silverman. Transcriptional regulation of multidrug resistance gene expression. Cancer Treat. Res. 73:57–68 (1994).

    Google Scholar 

  116. K. N. Furuya, J. V. Thottassery, E. G. Schuetz, M. Sharif, and J. D. Schuetz. Bromocriptine transcriptionally activates the multidrug resistance gene (pgp2/mdr1b) by a novel pathway. J. Biol. Chem 272:11518–25 (1997).

    Google Scholar 

  117. F. S. Lee, J. Hagler, Z. J. Chen, and T. Maniatis. Activation of the IkappaB alpha kinase complex by MEKK1, a kinase of the JNK pathway. Cell 88:213–22 (1997).

    Google Scholar 

  118. K. Cadwallader, J. Beltman, F. McCormick, and S. Cook. Differential regulation of extracellular signal-regulated protein kinase 1 and Jun N-terminal kinase 1 by Ca2+ and protein kinase C in endothelin-stimulated Rat-1 cells. Biochem. J. 321:795–804 (1997).

    Google Scholar 

  119. Z. G. Liu, H. Hsu, D. V. Goeddel, and M. Karin. Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87:565–76 (1996).

    Google Scholar 

  120. K. Antoku, Z. Liu, and D. E. Johnson. Inhibition of caspase proteases by CrmA enhances the resistance of human leukemic cells to multiple chemotherapeutic agents. Leukemia 11:1665–72 (1997).

    Google Scholar 

  121. R. Kahl. Protective and Adverse Biological Actions of Phenolic Antioxidants. Academic Press, London (1991).

    Google Scholar 

  122. M. J. Ellenhorn. Ellenhorn's Medical Toxicology. Williams & Wilkins, Baltimore, MD (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ah-Ng Tony Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, AN.T., Mandlekar, S., Yu, R. et al. Pharmacodynamics and Toxicodynamics of Drug Action: Signaling in Cell Survival and Cell Death. Pharm Res 16, 790–798 (1999). https://doi.org/10.1023/A:1011953431486

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011953431486

Navigation