Skip to main content
Log in

Noncontact Mapping for Radiofrequency Ablation of Complex Cardiac Arrhythmias

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Radiofrequency (RF) catheter ablation is the current treatment of choice for several cardiac arrhythmias. The conventional approach utilizing intracardiac electrograms during sinus rhythm and during tachycardia has inherent limitations, including limited two-dimensional fluoroscopic imaging and limited ability to evaluate several potential sites for ablation then go precisely to the most suitable site. Recently, a noncontact mapping system has been developed that can be used to perform single beat high resolution mapping of cardiac arrhythmias. In this report, we describe the advantage of utilizing the system in facilitating a successful outcome in 5 patients with different complex arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Haim SA, Osadchy D, Schuster I, et al. Nonfluoroscopic, in vivo navigation and mapping technology. Nature Med 1996;21(2):1393-1395.

    Google Scholar 

  2. Shpun S, Gepstein L, Hayam G, et al. Guidance of radiofrequency endocardial ablation with real time three-dimensional magnetic navigation system. Circulation 1997;96(6):2016-2021.

    Google Scholar 

  3. Varanasi S, Dhala A, Blanck Z, et al. Electroanatomical mapping for radiofrequency ablation of cardiac arrhythmias. J Cardiovasc Electrophysiol 1999;10:538-544.

    Google Scholar 

  4. Stevenson WG, Delacretaz E, Friedman PL, et al. Identification and ablation of macroreentrant ventricular tachycardia with the CARTO electroanatomical mapping system. PACE 1998;21:1448-1456.

    Google Scholar 

  5. Nakagawa H, Jackman WM. Use of a three-dimensional, nonfluoroscopic mapping system for catheter ablation of typical atrial flutter. PACE 1998;21:1279-1286.

    Google Scholar 

  6. Schilling RJ, Peters NS, Davies DW. Simultaneous endocardial mapping in the human left ventricle using a noncontact catheter: comparison of contact and reconstructed electrograms during sinus rhythm. Circulation 1998;98:887-898.

    Google Scholar 

  7. Schilling RJ, Peters NS, Davies W. Feasibility of a noncontact catheter for endocardial mapping of human ventricular tachycardia. Circulation 1999;99:2543-2552.

    Google Scholar 

  8. Gornick CC, Adler SW, Pederson B, et al. Validation of a new noncontact catheter system for electroanatomical mapping of left ventricular endocardium. Circulation 1999;99:829-835.

    Google Scholar 

  9. Strickberger SA, Knight BP, Michaud GF, et al. Mapping and ablation of ventricular tachycardia guided by virtual electrograms using a noncontact, computerized mapping system. J Am Coll Cardiol 2000;35:414-421.

    Google Scholar 

  10. Kadish A, Hauck J, Pederson B, et al. Mapping of atrial activation with a noncontact, multielectrode catheter in dogs. Circulation 1999;9:1906-1913.

    Google Scholar 

  11. Friedman PA, Stanton MS. Spot welding the gap in atrial flutter ablation. Images in Cardiovascular Medicine — Circulation 1999;99:3206-3208.

    Google Scholar 

  12. Betts TR, Roberts PR, Allen SA, et al. Electrophysiological mapping and ablation of intra-atrial reentry tachycardia after Fontan surgery with the use of a noncontact mapping system. Circulation 2000;102:419-425.

    Google Scholar 

  13. Schumacher B, Jung W, Lewalter T, et al. Verification of linear lesions using a noncontact multielectrode array catheter versus conventional contact mapping techniques. J Cardiovasc Electrophysiol 1999;10:791-798.

    Google Scholar 

  14. Schneider M, Ndrepepa G, Zrenner B, et al. Noncontact mapping-guided catheter ablation of atrial fibrillation associated with left atrial ectopy. J Cardiovasc Electrophysiol 2000;11:475-479.

    Google Scholar 

  15. Kalman JM, Olgin JE, Saxon LA, et al. Electrocardiographic and electrophysiologic characterization of atypical atrial flutter in man. J Cardiovasc Electrophysiol 1997;8:121-144.

    Google Scholar 

  16. Kall JG, Rubenstein DS, Kopp DE, et al. Atypical atrial flutter originating in the right atrial free wall. Circulation 2000;101:270-279.

    Google Scholar 

  17. Zipes DP, Knope RF. Electrical properties of the thoracic veins. Am J Cardiol 1972;29:72-376.

    Google Scholar 

  18. Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998;339:659-666.

    Google Scholar 

  19. Lin WS, Prakash VS, Tai CT, et al. Pulmonary vein morphology in patients with paroxysmal atrial fibrillation initiated by ectopic beats originating from the pulmonary veins: implications for catheter ablation. Circulation 2000;101:1274-1281.

    Google Scholar 

  20. Haissaguerre M, Jais P, Shah DC, et al. Electrophysiological endpoint for catheter ablation of atrial fibrillation initiated from multiple pulmonary venous foci. Circulation 2000;101:1274-1281.

    Google Scholar 

  21. Natale A, Breeding L, Tomassoni G, et al. Ablation of right and left ectopic atrial tachycardias using a three-dimensional nonfluoroscopic mapping system. Am Heart J 1998;82:989-992.

    Google Scholar 

  22. Stevenson WG, Khan H, Sager P, et al. Identification of reentry circuit sites during catheter mapping and radiofrequency ablation of ventricular tachycardia late after myocardial infarction. Circulation 1993;88:1674-1670.

    Google Scholar 

  23. El-Shalakany A, Hadjis T, Papageorgiou P, et al. Entrainment/mapping criteria for the prediction of termination of ventricular tachycardia by single radiofrequency lesion in patients with coronary artery disease. Circulation 1999;99:2283-2289.

    Google Scholar 

  24. Stevenson WG, Sager PT, Natterson PD, et al. Relation of pace mapping QRS configuration and conduction delay due to ventricular tachycardia reentry circuits in human infarct scars. J Am Coll Cardiol 1995;26:481-488.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sra, J., Bhatia, A., Krum, D. et al. Noncontact Mapping for Radiofrequency Ablation of Complex Cardiac Arrhythmias. J Interv Card Electrophysiol 5, 327–335 (2001). https://doi.org/10.1023/A:1011429119074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011429119074

Navigation