Skip to main content
Log in

Disparate cleavage of poly-(ADP-ribose)-polymerase (PARP) and a synthetic tetrapeptide, DEVD, by apoptotic cells

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

In the present investigations, we have shown differential cleavage of cellular PARP and a caspase 3-selective synthetic tetrapeptide substrate, Z-DEVD-AFC or Ac-DEVD-AMC using a T lymphoblastoid cell line Jurkat, and its variant clone E6.1(J-E6). Anti-Fas antibody-mediated apoptosis resulted in DNA fragmentation and PARP cleavage in both Jurkat and J-E6 cells. However, unlike Jurkat, J-E6 cells did not cleave a synthetic tetrapeptide substrate efficiently. The failure to cleave the DEVD tetrapeptide by apoptotic J-E6 cells was not due to insufficient expression or processing of caspase 3 in J-E6 cells. Interestingly, when the J-E6 cells were transiently transfected with a cDNA encoding caspase 3, efficient cleavage of Z-DEVD-AFC was achieved. The observations that apoptotic J-E6 cells barely cleaved a synthetic DEVD tetrapeptide, but efficiently cleaved endogenous PARP, potentially at the most preferred DEVD site, suggest that active caspases may have disparate characteristics to recognize substrates presented in different context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raff M. Neural development: Mysterious no more? Science 1996; 274: 1063.

    Google Scholar 

  2. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell 1997; 88: 347-354.

    Google Scholar 

  3. Boise LH, Noel PJ, Thompson CB. CD28 apoptosis. Curr Opin Immunol 1995; 7: 620-625.

    Google Scholar 

  4. Ishizaki Y, Cheng L, Mudge AW, Raff MC. Programmed cell death by default in embryonic cells, fibroblasts, and cancer cells. Mol Biol Cell 1995; 6: 1443-1458.

    Google Scholar 

  5. Krammer PH, Behrmann I, Daniel P, Dhein J, Debatin KM. Regulation of apoptosis in the immune system. Curr Opin Immunol 1994; 6: 279-289.

    Google Scholar 

  6. Nagata S, Suda T. Fas Fas ligand: lpr and gld mutations. Immunol Today 1995; 16: 39-43.

    Google Scholar 

  7. Nagata S. Fas-induced apoptosis diseases caused by its abnormality. Genes to Cells 1996; 1: 873-879.

    Google Scholar 

  8. Nagata S. Human autoimmune lymphoproliferative syndrome, a defect in the apoptosis-inducing Fas receptor: A lesson from the mouse model. J Hum Genetics 1998; 43: 2-8.

    Google Scholar 

  9. Rudin CM, Thompson CB. Apoptosis and disease: Regulation and clinical relevance of programmed cell death. Ann Rev Med 1997; 48: 267-281.

    Google Scholar 

  10. Kerr JF, Gobe GC, Winterford CM, Harmon BV. Anatomical methods in cell death. Meth Cell Biol 1995; 46: 1-27.

    Google Scholar 

  11. Chinnaiyan AM, Dixit VM. The cell-death machine. Curr Biol 1996; 6: 555-562.

    Google Scholar 

  12. Dragovich T, Rudin CM, Thompson CB. Signal transduction pathways that regulate cell survival and cell death. Oncogene 1998; 17: 3207-3213.

    Google Scholar 

  13. Dhein J, Daniel PT, Trauth BC, Oehm A, Moller P, Krammer PH. Induction of apoptosis by monoclonal antibody anti-APO-1 class switch variants is dependent on cross-linking of APO-1 cell surface antigens. J Immunol 1992; 149: 3166-3173.

    Google Scholar 

  14. Ashkenazi A, Dixit VM. Death receptors: Signaling and modulation. Science 1998; 281: 1305-1308.

    Google Scholar 

  15. Nicholson DW, Thornberry NA. Caspases: Killer proteases. Trends Biochem Sci 1997; 22: 299-306.

    Google Scholar 

  16. Enari M, Hug H, Nagata S. Involvement of an ICE-like protease in Fas-mediated apoptosis. Nature 1995; 375: 78-81.

    Google Scholar 

  17. Alnemri ES. Mammalian cell death proteases: A family of highly conserved aspartate specific cysteine proteases. J Cell Biochem 1997; 64: 33-42.

    Google Scholar 

  18. Thornberry NA, Lazebnik Y. Caspases: Enemies within. Science 1998; 281: 1312-1316.

    Google Scholar 

  19. Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997; 272: 17907-17911.

    Google Scholar 

  20. Salvesen GS, Dixit VM. Caspases: Intracellular signaling by proteolysis. Cell 1997; 91: 443-446.

    Google Scholar 

  21. Chinnaiyan AM, Orth K, O'Rourke K, Duan H, Poirier GG, Dixit VM. Molecular ordering of the cell death pathway. Bcl-2 and Bcl-xL function upstream of the CED-3-like apoptotic proteases. J Biol Chem 1996; 271: 4573-4576.

    Google Scholar 

  22. Orth K, O'Rourke K, Salvesen GS, Dixit VM. Molecular ordering of apoptotic mammalian CED-3/ICE-like proteases. J Biol Chem 1996; 271: 20977-20980.

    Google Scholar 

  23. Enari M, Talanian RV, Wong WW, Nagata S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 1996; 380: 723-726.

    Google Scholar 

  24. Casciola-Rosen L, Nicholson DW, Chong T, et al. Apopain/CPP32 cleaves proteins that are essential for cellular repair: A fundamental principle of apoptotic death. J Exp Med 1996; 183: 1957-1964.

    Google Scholar 

  25. Casciola-Rosen LA, Miller DK, Anhalt GJ, Rosen A. Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J Biol Chem 1994; 269: 30757-30760.

    Google Scholar 

  26. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994; 371: 346-347.

    Google Scholar 

  27. Kaufmann SH, Desnoyers S, OttavianoY, Davidson NE, Poirier GG. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis. Cancer Res 1993; 53: 3976-3985.

    Google Scholar 

  28. D'Amours D, Germain M, Orth K, Dixit VM, Poirier GG. Proteolysis of poly(ADP-ribose) polymerase by caspase 3: Kinetics of cleavage of mono(ADP-ribosyl)ated and DNA-bound substrates. Radiation Res 1998; 150: 3-10.

    Google Scholar 

  29. Nicholson DW, Ali A, Thornberry NA, et al. Identification inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995; 376: 37-43.

    Google Scholar 

  30. Schlegel J, Peters I, Orrenius S, et al. CPP32/apopain is a key interleukin 1 beta converting enzyme-like protease involved in Fas-mediated apoptosis. J Biol Chem 1996; 271: 1841-1844.

    Google Scholar 

  31. Duriez PJ, Shah GM. Cleavage of poly(ADP-ribose) polymerase: A sensitive parameter to study cell death. Biochem Cell Biol 1997; 75: 337-349.

    Google Scholar 

  32. Kircheis R, Kichler A, Wallner G, et al. Coupling of cellbinding ligands to polyethylenimine for targeted gene delivery. Gene Ther 1997; 4: 409-418.

    Google Scholar 

  33. Chow SC, Weis M, Kass GE, Holmstrom TH, Eriksson JE, Orrenius S. Involvement of multiple proteases during Fasmediated apoptosis in T lymphocytes. FEBS Lett 1995; 364: 134-138.

    Google Scholar 

  34. Faleiro L, Kobayashi R, Fearnhead H, Lazebnik Y. Multiple species of CPP32 and Mch2 are the major active caspases present in apoptotic cells. EMBO J 1997; 16: 2271-2281.

    Google Scholar 

  35. Kuida K, Zheng TS, Na S, et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 1996; 384: 368-372.

    Google Scholar 

  36. Martins LM, Kottke T, Mesner PW, et al. Activation of multiple interleukin-1beta converting enzyme homologues in cytosol and nuclei of HL-60 cells during etoposide-induced apoptosis. J Biol Chem 1997; 272: 7421-7430.

    Google Scholar 

  37. Jones RA, Johnson VL, Hinton RH, Poirier GG, Chow SC, Kass GE. Liver poly(ADP-ribose)polymerase is resistant to cleavage by caspases. Biochem Biophys Res Comm 1999; 256: 436-441.

    Google Scholar 

  38. Fernandes-Alnemri T, Armstrong RC, Krebs J, et al. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci USA 1996; 93: 7464-7469.

    Google Scholar 

  39. Han Z, Hendrickson EA, Bremner TA, Wyche JH. Asequential two-step mechanism for the production of the mature p17:p12 form of caspase-3 in vitro. J Biol Chem 1997; 272: 13432-13436.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, K., Kennedy, C.A., O'Neill, M.M. et al. Disparate cleavage of poly-(ADP-ribose)-polymerase (PARP) and a synthetic tetrapeptide, DEVD, by apoptotic cells. Apoptosis 6, 151–160 (2001). https://doi.org/10.1023/A:1011375024832

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011375024832

Navigation