Skip to main content
Log in

Determination of the Kinetic and Thermodynamic Parameters of Adsorption Processes by a Volume Step Thermal Method

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A volume step method measuring the pressure and the adsorbent temperature of an adsorbent-adsorbate system has been developped. It is shown that this method allows the determination of all the relevant parameters of an adsorption process, kinetic as well as thermodynamic in case of Linear Driving Force mass transfer. The method for determining the parameters can be extended to the case of diffusive mass transfer if the mass transfer kinetics is faster than the heat transfer kinetics. An example is given, showing the determination of the diffusion coefficient of carbon dioxide in NaX zeolite pellets and the change of the diffusion coefficient and of the isosteric heat of adsorption when the adsorbent is not fully dehydrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bourdin, V., P.G. Gray, Ph. Grenier, and M.F. Terrier, “An Apparatus for Adsorption Dynamics Studies Using Infrared Measurement of the Adsorbent Temperature,” Rev. Sci. Inst., 69, 2130–2136 (1998).

    Google Scholar 

  • Brandt, W.W. and W. Rudloff, “Rapid Sorption Processes on Granular Zeolite,” J. Phys. Chem. Solids, 25, 167–176 (1964).

    Google Scholar 

  • Bülow, M., P. Struve, G. Finger, C. Redszus, K. Ehrhardt, W. Schirmer, and J. Kärger, “Sorption Kinetics of n-Hexane on MgA Zeolites of Different Crystal Sizes,” J. Chem. Soc. Faraday Trans. 1, 76, 597–615 (1980).

    Google Scholar 

  • Bülow, M. and A. Micke, “Determination of Transport Coefficients in Microporous Solids,” Adsorption, 1, 29–48 (1995).

    Google Scholar 

  • Crank, J., The Mathematics of Diffusion, Clarendon Press, Oxford, 1956.

    Google Scholar 

  • Dubinin, M.M., I.T. Erashko, O. Kadlec, V.I. Ulin, A.M. Voloshchuk, and P.P. Zolotarev, “Kinetics of Physical Adsorption by Carbonaceous Adsorbents of Biporous Structure,” Carbon, 13, 193–200 (1975).

    Google Scholar 

  • Dunne, J.A., M. Rao, S. Sircar, R.J. Gorte, and A.L. Myers, “Calorimetric Heats of Adsorption and Adsorption Isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5 and Na-ZSM-5 Zeolites,” Langmuir, 12(24), 5896–5904 (1996).

    Google Scholar 

  • Grenier, Ph., V. Bourdin, L.M. Sun, and F. Meunier, “Single Step Thermal Method to Measure Intracrystalline Mass Diffusion in Adsorbents,” AIChE J., 41(9), 2047–2057 (1995).

    Google Scholar 

  • Haul, R. and H. Stremming, “Nonisothermal Sorption Kinetics in Porous Adsorbents,” J. Colloid Interface Sci., 97(2), 348–354 (1983).

    Google Scholar 

  • Kärger, J., M. Bülow, V.I. Ulin, A.M. Voloshchuk, P.P. Zolotarev, M. Kocirik, and A. Zikanova, “On the Importance of Dimension Variation in Determining the Limiting Steps in Adsorption Kinetics,” J. Chem. Tech. Biotechnol., 32, 376–381 (1982).

    Google Scholar 

  • Kärger, J., H. Pfeifer, F. Stallmach, N.N. Feoktistova, and S.P. Zhdanov, “129Xe and 13C n.m.r. Study of the Intracrystalline Self-Diffusion of Xe, CO2 and CO,” Zeolites, 13, 50–55 (1993).

    Google Scholar 

  • Kennard, E.H., Kinetic Theorie of Gases, McGraw-Hill, New York, 1938.

    Google Scholar 

  • Kocirik, M., P. Struve, and M. Bülow, “Analytical Solution of Simulataneous Mass and Heat Transfer in Zeolite Crystals under Constant-Volume/Variable-Pressure Conditions,” J. Chem. Soc. Faraday Trans. 1, 80, 2167–2174 (1984).

    Google Scholar 

  • Kocirik, M., A. Zikanova, P. Struve, and M. Bülow, “Peculiarities of the Mass Transport Across Zeolite Crystal Surfaces,” Z. Phys. Chemie, Leipzig, 271, 43–50 (1990).

    Google Scholar 

  • Ma, H.Y. and T.Y. Lee, “Transient Diffusion in Solids with a Bipore Distribution,” AIChE J., 22, 147–152 (1976).

    Google Scholar 

  • Malka-Edery, A., Etude de l'influence de traces d'eau sur l' adsorption et la diffusion en phase gazeuse d'alcanes, d'alcènes et du dioxyde de carbone dans la zéolite NaX, Thesis, Paris 6 University, Paris, 1999.

    Google Scholar 

  • Marutovskii, R.M. and M. Bülow, “Surface-Barrier Resistance and Intracrystalline Diffusion in the Adsorption of Gases in the Micropore Structure of Zeolites,” Colloid J. USSR, 46, 32–37 (1984).

    Google Scholar 

  • Riekert, L., “Rates of Sorption and Diffusion of Hydrocarbons in Zeolites,” AIChE J., 17, 446–454 (1971).

    Google Scholar 

  • Ruckenstein, E., A.S.Vaidyanathan, and G.R.Youngquist, “Sorption by Solids with Bidisperse Pore Structures,” Chem. Eng. Sci., 26, 1305–1318 (1971).

    Google Scholar 

  • Ruthven, D.M. and L.-K. Lee, “Kinetics of Nonisothermal Sorption: Systems with Bed Diffusion Control,” AIChE J., 27, 654–663 (1981).

    Google Scholar 

  • Ruthven, D.M., Principle of Adsorption and Adsorption Processes, Wiley, New York, 1984.

    Google Scholar 

  • Sircar, S. “Linear-Driving-Force Model for Non-Isothermal Gas Adsorption Kinetics,” J. Chem. Soc. Faraday Trans. 1, 79, 785–796 (1983).

    Google Scholar 

  • Sircar, S. and R.J. Kumar, “Non-Isothermal Surface Barrier Model for Gas Sorption Kinetics on Porous Adsorbents,” J. Chem. Soc. Faraday Trans. 1, 80, 2489–2507 (1984).

    Google Scholar 

  • Sun, L.M., Contribution à l'étude de la cinétique d'adsorption de gaz. Modélisation et simulation numérique, Thesis, Paris 6 University, Paris, 1988.

    Google Scholar 

  • Sun, L.M. and F. Meunier, “A Detailed Model for Nonisothermal Sorption in Porous Adsorbents,” Chem. Eng. Sci., 42, 1585–1593 (1987).

    Google Scholar 

  • Van-Den-Begin, N., L.V.C. Rees, J. Caro, and M. Bülow, “Fast Adsorption-Desorption Kinetics of Hydrocarbons in Silicalite-1 by the Single-Step Frequency Response Method,” Zeolites, 9, 287–292 (1989).

    Google Scholar 

  • Zolotarev, P.P. and V.V. Ugrozov, “Effect of Outer Mass Exchange on the Sorption Kinetics of Biporous Sorbents for Linear Sorption Isotherm. 1. General Expressions for the Kinetic Curves,” Russ. J. Phys. Chem., 56, 510–512 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdallah, K., Bourdin, V., Grenier, P. et al. Determination of the Kinetic and Thermodynamic Parameters of Adsorption Processes by a Volume Step Thermal Method. Adsorption 7, 5–16 (2001). https://doi.org/10.1023/A:1011204415436

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011204415436

Navigation