Skip to main content
Log in

Altered Disposition and Effect of Lerisetron in Rats with Elevated Alpha1-acid Glycoprotein Levels

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To examine the effect of changes in plasma α1-acid glycoprotein (AAG) levels on the pharmacokinetics (PK) and pharmacodynamics (PD) of lerisetron, a novel serotonin 5-HT3 receptor antagonist, in the rat.

Methods. After subcutaneous administration of turpentine oil, AAG was significantly elevated compared with controls. The PK of unchanged lerisetron (UL; high-performance liquid chromatography with radioactivity monitoring) and total lerisetron (TL; unchanged + changed, scintillation counting) was characterized post intravenous (i.v.) 14C lerisetron (50 μg/kg) in control and turpentine oil pretreated rats. The PK (0 − 180 min) was described by a two-compartmental model. Protein binding of lerisetron in vitro was measured using an ultrafiltration technique. The effect of lerisetron (5 μg/kg, i.v.) over 180 min was measured in anesthetized rats (control and pretreated) with the Bezold-Jarisch reflex (inhibition of bradycardia after 16 μg/kg serotonin i.v.) as the endpoint. PD parameters were estimated by sigmoid Emax models.

Results. The unbound fraction was significantly diminished in pretreated rats (mean ± SEM) (6.60 ± 1.23% vs. control 14.4 ± 1.40%, P < 0.05). Volume of distribution (V) and clearance for UL and TL were significantly decreased when compared to the controls (P < 0.0001 for UL and P < 0.05 for TL). Plasma clearance based on unbound concentration for UL did not differ between groups but the unbound V and steady-state unbound V remained decreased (P < 0.05 and P < 0.0001). Pretreated rats showed a significantly diminished drug effect: the area under the E-t curve over 180 min was (mean ± SEM) 5189 ± 657.7 in control animals vs. 3486 ± 464.4 in the pretreated group (P < 0.05). The EC50 (concentration at half maximum effect) for UL and TL were increased in pretreated rats and were not compensated when the unbound concentration was used.

Conclusions. An increase in AAG causes alterations in the PK and PD of lerisetron, and because this is not compensated with the unbound concentration, we suggest that mechanisms not linked to protein binding may be involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Orjales, R. Mosquera, L. Labeaga, and R. Rodes. New 2-pi-perazinylbenzimidazole derivatives as 5-HT3 antagonists. Synthesis and pharmacological evaluation. J. Med. Chem. 40:586-593 (1997).

    Google Scholar 

  2. M. Yamano, T. Kamato, A. Nishida, H. Ito, H. Yuki, R. Tsutsumi, K. Honda, and K. Miyata. Serotonin (5-HT) receptor antagonism of 4, 5, 6, 7-tetrahydrobenzimidazole derivatives against 5-HT induced bradycardia in anesthetized rats. Jpn. J. Pharmacol. 65:241-248 (1994).

    Google Scholar 

  3. N. Jauregizar, R. Calvo, E. Suarez, A. Quintana, E. Raczka, and J. C. Lukas. Pharmacokinetics and pharmacological effect of lerisetron, a new 5-HT3 antagonist, in rats. J. Pharm. Sci. (in press).

  4. R. Calvo, R. M. Jimenez, I. F. Troconiz, E. Suarez, A. Gonzalo, M. L. Lucero, E. Raczka, and A. Orjales. Serum protein binding of lerisetron, a novel specific 5-HT3 antagonist, in patients with cancer. Cancer Chemother. Pharmacol. 42:418-422 (1998).

    Google Scholar 

  5. K. M. Piafsky. Disease-induced changes in the plasma binding of basic drugs. Clin. Pharmacokinetic. 5:246-262 (1980).

    Google Scholar 

  6. J. Chiang and S. Oie. Pharmacologic activity of prazosin is decreased by alpha-1-acid glycoprotein ‘in vivo.’ J. Pharmacol. Exp. Ther. 254:324-329 (1990).

    Google Scholar 

  7. M. Yasuhara, J. Fujiwara, H. Kitade, K. Okumara, and R. Hori. Effect of altered plasma protein binding on pharmacokinetics and pharmacodynamics of propranolol in rats after surgery: Role of alfa 1 acid glycoprotein. J. Pharmacol. Exp. Ther. 235:513-520 (1985).

    Google Scholar 

  8. A. F. de Rick, F. M. Belpaie, C. Dello, and M. G. Bogaert. Influence of enhanced alpha-1-acid glycoprotein concentration on protein binding, pharmacokinetics and antiarrhythmic effect of lidocaine in the dog. J. Pharmacol. Exp. Ther. 241:289-293 (1987).

    Google Scholar 

  9. J. D. Huang and S. Oie. Influence of serum protein binding on hepatic clearance of S-disopyramide in the rabbit. J. Pharm. Pharmacol. 37:471-475 (1985).

    Google Scholar 

  10. C. Aguirre, I. C. Troconiz, A. Valdivieso, R. M. Jimenez, J. P. Gonzalez, R. Calvo, and J. M. Rodriguez-Sasiain. Pharmacokinetics and pharmacodynamics of penbutolol in healthy and cancer patients: Role of altered protein binding. Res. Commun. Mol. Phatol. Pharmacol. 92:53-72 (1996).

    Google Scholar 

  11. I. Torres, E. Suarez, J. M. Rodriguez-Sasiain, C. Aguirre, and R. Calvo. Differential effect of cancer on the serum protein binding to mianserin and imipramine. Eur. J. Drug Metab. Pharmacokinet. 20:107-111 (1995).

    Google Scholar 

  12. I. Torres, E. Suarez, J. M. Rodriguez-Sasiain, E. Gomez, and R. Calvo. Changes in the analgesic effect of mianserin associated with altered plasma protein binding in experimental cancer. Res. Commun. Mol. Phatol. Pharmacol. 89:341-350 (1992).

    Google Scholar 

  13. M. J. Garrido, M. Valle, R. Calvo, and I. F. Troconiz. Altered plasma and brain disposition and pharmacodynamics of methadone in abstinent rats. J. Pharmacol. Exp. Ther. 288:179-187 (1999).

    Google Scholar 

  14. S. D. Yoo, J. W. Holladay, T. K. Fincher, H. Baumann, and M. J. Dewey. Altered disposition and antidepressant activity of imipramine in transgenic mice with altered alpha-1-acid glycoprotein. J. Pharmacol. Exp. Ther. 276:918-922 (1996).

    Google Scholar 

  15. W. M. Pardridge, R. Sakiyama, and G. Fierer. Transport of propranolol and lidocaine through the rat blood-brain barrier. Primary role of globulin-bound drug. J. Clin. Invest. 71:900-908 (1983).

    Google Scholar 

  16. P. Riant, S. Urien, E. Albengres, A. Renovard, and J. P. Tillement. Effects of the binding of imipramine to erythrocytes and plasma proteins on its transport through thr rat blood-brain barrier. J. Neurochem. 51:421-425 (1988).

    Google Scholar 

  17. K. M. Chiu, R. F. Mortensen, A. P. Osmand, and H. Gewurz. Interactions of alpha1-acid glycoprotein with the immune system. I. Purification and effects upon lymphocyte responsiveness. Immunology 32:997-1005 (1997).

    Google Scholar 

  18. J. Chiang, G. Hermodsson, and S. Oie. The effect of alpha 1-acid glycoprotein on the pharmacological activity of alpha 1-adrenergic antagonists in rabbit aortic strips. J. Pharm. Pharmacol. 43:540-547 (1991).

    Google Scholar 

  19. H. Imamura, T. Maruyama, H. Okabe, H. Shimada, and M. Otagiri. A simple and rapid fluorometric determination method of alpha 1-acid glycoprotein in serum using quinaldine red. Pharm. Res. 11:566-570 (1994).

    Google Scholar 

  20. I. Torres, E. Gomez, E. Garcia, E. Suarez, J. M. Rodriguez-Sasiain, and R. Calvo. Influence of changes in protein binding on the central activity of antidepressants. J. Pharm. Pharmacol. 44:531-533 (1992).

    Google Scholar 

  21. E. Gomez, R. Martinez-Jorda, E. Suarez, M. J. Garrido, and R. Calvo. Altered methadone analgesia due to changes in plasma protein binding: Role of the route of administration. Gen. Pharmacol. 26:1273-1276 (1995).

    Google Scholar 

  22. R. Martinez Jorda, C. Aguirre, R. Calvo, J. M. Rodriguez-Sasiain, and S. Erill. Decrease in penbutolol central response as a cause of changes in its serum protein binding. J. Pharm. Pharmacol. 42:164-166 (1990).

    Google Scholar 

  23. C. Parent, P. M. Belanger, L. Jutras, and P. du Souich. Effect of inflammation on the rabbit hepatic cytochrome P-450 isoenzymes: Alterations in kinetics and dynamics of tolbutamide. J. Pharmacol. Exp. Ther. 261:780-787 (1992).

    Google Scholar 

  24. A. B. Kobusch, S. Erill, and P. du Souich. Relationship between changes in seromucoid concentrations and the rate of oxidation or acetylation of several substrates. Drug Metab. Dispos. 14:663-667 (1986).

    Google Scholar 

  25. J. W. Holladay, M. J. Dewey, and S. D. Yoo. Pharmacokinetics and antidepressant activity of fluoxetine in transgenic mice with elevated serum alpha-1-acid glycoprotein levels. Drug Metab. Dispos. 26:20-24 (1998).

    Google Scholar 

  26. H. Matsusima, T. Watanabe, and S. Higuchi. Effect of alpha1-acid glycoprotein on the pharmacokinetics of tamsulosin in rats treated with turpentine oil. J. Pharm. Sci. 89:490-498 (2000).

    Google Scholar 

  27. M. Rowland and T. N. Tozer. Clinical Pharmacokinetics: Concepts and Applications, 3rd Ed, William & Wilkins, Media, PA, 1995a pp. 137-155.

    Google Scholar 

  28. M. Quin, M. Nilsson, and S. Oie. Decreased elimination of drug in the presence of alpha1-acid-glycoprotein is related to a reduced heptocyte uptake. J. Pharmacol. Exp. Ther. 269:1176-1181 (1994).

    Google Scholar 

  29. S. Oie, F. Fiori, and J. Chiang. Decreased elimination of unbound prazosin in the presence of alpha-1-acid glycoprotein in the rat in vivo. J. Pharmacol. Exp. Ther. 241:934-938 (1987).

    Google Scholar 

  30. F. M. Belpaire, M. G. Bogaert, P. Mugabo, and M. T. Rosseel. Binding to serum alpha-1-acid glycoprotein and effect of beta-adrenoceptor antagonists in rats with inflammation. Br. J. Pharmacol. 88:697-705 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jauregizar, N., Calvo, R., Suarez, E. et al. Altered Disposition and Effect of Lerisetron in Rats with Elevated Alpha1-acid Glycoprotein Levels. Pharm Res 18, 838–845 (2001). https://doi.org/10.1023/A:1011096714860

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011096714860

Navigation