Skip to main content

Advertisement

Log in

Inhibitory effect of 1-O (2 methoxy) hexadecyl glycerol and phenylbutyrate on the malignant properties of human prostate cancer cells

  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The ability of the naturally occurring ether lipid, 1-O (2 methoxy) hexadecyl glycerol (MHG), and phenylbutyrate (BP) to inhibit cellular proliferation, anchorage-independent growth and cellular invasion in the human prostate cancer LnCap and DU145 cells was determined. Both MHG and PB inhibited the malignant properties of these prostate cancer cells. The concentrations required to achieve similar inhibitory effect, however, were significantly different for these two agents. MHG inhibited cell growth with equal potency in these cell lines with an IC-50 value of 93 μM for LnCap, and 97 μM for DU145. The IC-50 values for PB were 1.3 mM and 7.3 mM, respectively, for LnCap and DU145 cells. Both MHG and PB (IC-50 concentrations) inhibited the anchorage-independent growth and cellular invasion in these cells. Over 50% inhibition of anchorage-independent growth was achieved for both LnCap and DU145 cells by PB, while a lesser degree of inhibition was achieved with MHG. Both MHG- and PB-treated cells showed a reduced propensity to invade matrigels. Invasion of PB-treated LnCap and DU145 cells was reduced, respectively, by approximate 41 and 30% when compared to untreated control cells, while invasion of MHG-treated LnCap and DU145 cells was reduced to a lesser extent. Because differentiation-inducing agents may possess chemopreventive properties, the use of naturally occurring MHG and nontoxic PB in the chemoprevention of malignant diseases warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kulikov VI, Muzya GI. Ether lipids and platelet-activating factor: evolution and cellular function. Biochemistry 1997; 62(10): 1103–8.

    PubMed  CAS  Google Scholar 

  2. Nishizuka Y. Turnover of inositol phospholipids and signal transduction. Science (Washington, DC) 1984; 225: 1365–70.

    CAS  Google Scholar 

  3. Berridge MJ. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 1984; 220: 175–8.

    Google Scholar 

  4. Daniel LW, Small GW, Schmitt JD. Alkyl-linked diglycerides inhibit protein kinase C activation by diacylglycerols. Biochem Biophys Res Commun 1988; 151: 291–7.

    Article  PubMed  CAS  Google Scholar 

  5. Serhan CN, Haggstrom JZ, Leslie CC. Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J 1996; 10: 1147–58.

    PubMed  CAS  Google Scholar 

  6. Suzuki M, Sugatani J, Ino M et al. Continuous binding of the PAF molecule to its receptor is necessary for the long-term aggregation of platelets. Am J Physiol 1998; 274: C47–C57.

    PubMed  CAS  Google Scholar 

  7. Orga SS, Weintraub D, Orga PL. Immunologic aspects of human colostrum and milk. J Immunol 1997; 19: 245–8.

    Google Scholar 

  8. Ngwenya BZ, Yamamoto N. Effects of inflammation products on immune systems: Lysophosphatidycholine stimulates macrophages. Cancer Immunol Immunother 1986; 21: 174–82.

    Article  PubMed  CAS  Google Scholar 

  9. Croft SL, Neal RA, Pendergast W et al. The activity of alkyl phosphorylcholines and related derivatives against LEISHMANIA DONOVANI. Biochem Pharm 1987; 36: 2633–6.

    Article  PubMed  CAS  Google Scholar 

  10. Oh S, Jadhav LS. Effects of dietary alkylglycerols in lactating rats on immune response. Pediatric Res 1994; 36: 300–5.

    CAS  Google Scholar 

  11. Kitchen E, Rossi AG, Condliffe AM et al. Demonstration of reversible priming of human neutrophils using platelet-activating factor. Blood 1996; 88: 4330–7.

    PubMed  CAS  Google Scholar 

  12. Brohult A. Alkylglycerols as growth-stimulating substances. Nature (London) 1960; 188: 591–2.

    Article  CAS  Google Scholar 

  13. Bennett SA, Birnboim HC. Receptor-mediated and protein kinasedependent growth enhancement of primary human fibroblasts by platelet activating factor. Mol Carcinogenesis 1997; 20: 366–75.

    Article  CAS  Google Scholar 

  14. Rougier F, Dupuis F, Cornu E et al. Platelet-activating factor and antagonists modulate DNA synthesis in human bone marrow stromal cell cultures. J Lipid Mediator Cell Signalling 1997; 16: 147–53.

    Article  CAS  Google Scholar 

  15. Bix GJ, Clark GD. Platelet-activating factor receptor stimulation disrupts neuronal migration in vitro. J Neurosci 1998; 18: 307–18.

    PubMed  CAS  Google Scholar 

  16. Herrmann DBJ, Neumann HA. Cytotoxic ether phospholipids. J Biol Chem 1986; 261: 7742–7.

    PubMed  CAS  Google Scholar 

  17. Verdonck LF, van Heugten HG. Ether lipids are effective cytotoxic drugs against multidrug-resistant acute leukemia cells and can act by the induction of apoptosis. Leuk Res 1997; 21: 37–43.

    Article  PubMed  CAS  Google Scholar 

  18. Mollinedo F, Fernandez-Luna JL, Gajate C et al. Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (Edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-X(L). Cancer Res 1997; 57: 1320–8.

    PubMed  CAS  Google Scholar 

  19. Hallgren B, Larsson S. The glycerol ethers in the liver oils of elasmobranch fish. Lipid Res 1962; 3: 31–8.

    CAS  Google Scholar 

  20. Bordier CG, Sellier N, Foucault AP et al. Purification and characterization of deep sea shark centrophorus squamosus liver oil 1-O-alkylglycerol ether lipids. Lipids 1996; 31: 521–8.

    PubMed  CAS  Google Scholar 

  21. Hallgren B, Larsson S. The glycerol ethers in man and cow. Lipid Res 1962; 39–43.

  22. Brohult A, Brohult J, Brohult S et al. Effect of alkoxyglycerols on the frequency of injuries following radiation therapy for carcinoma of the uterine cervix. Acta Obstet Gynecol Scand 1977; 56: 441–8.

    Article  PubMed  CAS  Google Scholar 

  23. Brohult A, Brohult J, Brohult S. Regression of tumour growth after administration of alkoxyglycerols. Acta Obstet Gynecol Scand 1978; 57: 79–83.

    PubMed  CAS  Google Scholar 

  24. Brohult A, Brohult J, Brohult S et al. Reduced mortality in cancer patients after administration of alkoxyglyceros. Acta Obstet Gynecol Scand 1986; 65: 779–85.

    PubMed  CAS  Google Scholar 

  25. Hallgren B, Stallberg G, Boeryd B. Occurrence, synthesis and biological effect of methoxysubstituted ethers. Progress Chem Fats Other Lipids 1978; 16: 45.

    Article  CAS  Google Scholar 

  26. Wang H, Rajagopal S, Reynolds S et al. Differentiation-promoting effect of 1-O (2 methoxy) hexadecyl glycerol in human colon cancer cells. J Cell Physiol 1999; 178: 173–8.

    Article  PubMed  CAS  Google Scholar 

  27. Olivieri NF, Rees DC, Ginder GD et al. Elimination of transfusions through induction of fetal hemoglobin synthesis in Cooley's anemia. Ann NY Acad Sci 1998; 850: 100–9.

    Article  PubMed  CAS  Google Scholar 

  28. Yu KH, Weng L-J, Piantadosi S et al. Augmentation of phenylbutyrate-induced differentiation of myeloid leukemia cells using all-trans retinoic acid. Leukemia 1999; 13: 1258–65.

    Article  PubMed  CAS  Google Scholar 

  29. Carducci MA, Nelson JB, Chan-Tack KM et al. Phenylbutyrate induces apoptosis in human prostate cancer and is more potent than phenylacetate. Clin Cancer Res 1996; 2: 379–87.

    PubMed  CAS  Google Scholar 

  30. Melchior SW, Brown LG, Figg WD et al. Effects of phenylbutarate on proliferation and apoptosis in human prostate cancer cells in vitro and in vivo. Int J Oncol 1999; 14: 501–8.

    PubMed  CAS  Google Scholar 

  31. Perrine SP, Ginder GD, Faller GV et al. A short-term trial of butyrate to stimulate fetal-globin-gene expression in the beta-globin disorders. N Engl J Med 1993; 328: 81–6.

    Article  PubMed  CAS  Google Scholar 

  32. Brusilow SW, Finkelstein J. Restoration of nitrogen homeostasis in a man with ornithine transcarbamylase deficiency. Metabolism 1993; 42: 1336–9.

    Article  PubMed  CAS  Google Scholar 

  33. Hoppe C, Vichinsky E, Lewis B et al. Hydroxyurea and sodium phenylbutarate therapy in Thalassemia Intermedia. Am J Hematol 1999; 62: 221–7.

    Article  PubMed  CAS  Google Scholar 

  34. Macmillan L, Fouladi M, Nisbet-Brown E et al. Treatment of two infants with Cooley's Anemia with sodium phenylbutarate. Ann NY Acad Sci 1998; 850: 452–4.

    Article  PubMed  CAS  Google Scholar 

  35. Warrel RP, He L-Z, Richon V et al. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 1998; 90: 1621–5.

    Article  Google Scholar 

  36. Breitman T, Selonick S, Collins S. Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA 1980; 77: 2936–40.

    Article  PubMed  CAS  Google Scholar 

  37. Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation 1981; 19: 1–20.

    PubMed  CAS  Google Scholar 

  38. Langdon S, Hawkes M, Hay F et al. Effect of sodium butyrate and other differentiation inducers on poorly differentiated human ovarian adenocarcinoma cell lines. Cancer Res 1988; 48: 6161–5.

    PubMed  CAS  Google Scholar 

  39. Hoosein N, Brattain D, McKnight M et al. Comparison of the antiproliferative effects of transforming growth factor-β, N, NDimethylformamide and retinoic acid on human colon carcinoma cell lines. Cancer Lett 1988; 40: 219–32.

    Article  PubMed  CAS  Google Scholar 

  40. Fatini J, Verrier B, Robert C et. al. Suramin-induced differentiation of the human colonic adenocarcinoma cell clone HT29-D4 in ser-free medium. Exp Cell Res 1990; 189: 109–17.

    Article  Google Scholar 

  41. Chakrabarty S, Fan D, Varani J. Regulation of differentiation and cellular proliferation in human colon-carcinoma cells by transforming growth factor β1 and β2. Int J Cancer 1990; 46: 493–9.

    PubMed  CAS  Google Scholar 

  42. Varani J, Chakrabarty S. Modulation of fibronectin synthesis and fibronectin binding during transformation and differentiation of mouse AKR fibroblasts. J Cell Physiol 1990; 143: 445–54.

    Article  PubMed  CAS  Google Scholar 

  43. Levine AE, Chakrabarty S. Response of FR3T3 cells transformed by Ha-ras oncogene and epidermal growth factor gene to differentiation induction by N, N-Dimethylformamide. Int J Cancer 1992; 50: 653–8.

    PubMed  CAS  Google Scholar 

  44. Hong WK, Sporn MB. Recent advances in chemoprevention of cancer. Science (Washington, DC) 1997; 278: 1073–7.

    Article  CAS  Google Scholar 

  45. Huang S, Trujillo JM, Chakrabarty S. Proliferation of human colon cancer cells: Role of epidermal growth factor and transforming growth factor α. Int J Cancer 1992; 52: 978–86.

    PubMed  CAS  Google Scholar 

  46. Huang Y, Waxman S. Enhanced growth inhibition and differentiation of fluorodeoxyuridine-treated human colon carcinoma cells by phenylbutyrate. Clin Cancer Res 1998; 4: 2503–9.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, S., Cederberg, H. & Chakrabarty, S. Inhibitory effect of 1-O (2 methoxy) hexadecyl glycerol and phenylbutyrate on the malignant properties of human prostate cancer cells. Clin Exp Metastasis 18, 309–312 (2000). https://doi.org/10.1023/A:1011071907047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011071907047

Navigation