Skip to main content
Log in

Delivery of Cell Cycle Genes to Block Astrocytoma Growth

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Current therapies for glioblastoma multiforme are ineffective. Therefore, novel therapies that target specific differences between normal and malignant cells are urgently needed. Abnormalities of cell-cycle related genes are a common feature of cancer in general and astrocytic tumors in particular. The role of these proteins is to help to regulate cell proliferation, differentiation and apoptosis. Restoring wild-type activity of critical regulators of the cell cycle to astrocytic tumors generally results in modification of the growth properties, and often the viability, of the cancer cells. Transfer of p53 induces growth arrest and, more importantly, apoptosis. Restoration of the Rb pathway results in either reversible growth arrest or senescence. Expression of E2F-1 induces transient increase of proliferation followed by massive apoptosis. Overexpression of MMAC/PTEN arrests cell cycle progression in G1 and promotes anoikis. Current knowledge of the functions of these cell-cycle controllers can be used to design small peptides and drugs to induce cell-cycle related anti-cancer effect. Inactivation of the p53 and Rb pathways in cancer cells is also being used to engineer mutant viruses that are able to replicate exclusively in cancerbreak cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alemany R, Gomez-Manzano C, Balague C, Yung WKA, Curiel DT, Kyritsis AP, Fueyo J: Gene therapy for gliomas: Molecular targets, adenoviral vectors, and oncolytic adenoviruses. Exp Cell Res 252: 1–12, 1999

    Google Scholar 

  2. Rasheed BK, Wiltshire RN, Bigner SH, Bigner DD: Molecular pathogenesis of malignant gliomas. Curr Opin Oncol 11: 162–167, 1999

    Google Scholar 

  3. Dirks PB, Rutka JT: Current concepts in neuro-oncology: the cell cycle - a review. Neurosurgery 40: 1000–1013, 1997

    Google Scholar 

  4. Nigro JM, Baker SJ, Preisinger AC: Mutations in the p53 gene occur in diverse human tumour types. Nature 342: 705–708, 1989

    Google Scholar 

  5. Sidransky D, Mikkelsen T, Schwechheimer K, Rosenblum ML, Cavanee W, Vogelstein B: Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355: 846–847, 1992

    Google Scholar 

  6. El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B: WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825, 1993

    Google Scholar 

  7. Deng C, Zhang P, Harper JW, Elledge SJ, Leder P: Mice lacking p21 CIP/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675–684, 1995

    Google Scholar 

  8. Miyashita T, Reed JC: Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80: 293–299, 1995

    Google Scholar 

  9. Buckbinder L, Talbott R, Valesco-Miguel S, Takenaka L, Faha B, Sezinger BR, Kley N: Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377: 646–649, 1995

    Google Scholar 

  10. Owen-Schaub LB, Zhang W, Cusack JC, Angelo LS, Santee SM, Fujiwara T, Roth JA, Deisseroth AB, Zhang WW, Kruzel E, Radinsky R. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 15: 3032–3040, 1995

    Google Scholar 

  11. Wu GS, Saftig P, Peters C, El-Deiry WS: Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene 16: 2177–2183, 1998

    Google Scholar 

  12. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B: A model for p53-induced apoptosis. Nature 389: 300–305, 1997

    Google Scholar 

  13. Caelles C, Helmberg A, Karin M: p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370: 220–223, 1994

    Google Scholar 

  14. Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M: Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345–347, 1991

    Google Scholar 

  15. Mercer WE, Shields MT, Amin M, Sauve GJ, Appella E, Romano JW, Ullrich SJ: Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wild-type p53. Proc Natl Acad Sci USA 87: 6166–6170, 1990

    Google Scholar 

  16. Rosenfeld MR, Meneses P, Dalmau J, Drobjnak M, Cordon-Cardo C, Kaplitt MG: Gene transfer of wild-type p53 results in restoration of tumor suppressor function in a medulloblastoma cell line. Neurology 45: 1533–1539, 1994

    Google Scholar 

  17. Merzak A, Raynal S, Rogers JP, Lawrence D, Pilkington GJ: Human wild-type p53 inhibits cell proliferation and elicits dramatic morphological changes in human glioma cell lines in vitro. J Neurol Sci 127: 125–133, 1994

    Google Scholar 

  18. Asai A, Miyagi Y, Sugiyama A, Gamanuma M, Hong SH, Takamoto S, Nomura K, Matsutani M, Takakura K, Kuchino Y: Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenicity of glioma cells. J Neuro-Oncol 19: 259–268, 1994

    Google Scholar 

  19. Van Meir EG, Roemer K, Diserens A-C, Kikuchi T, Rempel SA, Haas M, Huang HJ, Friedmann T, de Tribolet N, Cavenee WK: Single cell monitoring of growth arrest and morphological changes induced by transfer of wild-type p53 alleles to glioblastoma cells. Proc Natl Acad Sci USA 92: 1008–1012, 1995

    Google Scholar 

  20. Gomez-Manzano C, Fueyo J, Kyritsis AP, Steck PA, Roth JA, McDonnell TJ, Steck KD, Levin VA, Yung WK: Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Cancer Res 56: 694–699, 1996

    Google Scholar 

  21. Gomez-Manzano C, Fueyo J, Kyritsis AP, McDonnell TJ, Steck PA, Levin VA, Yung WK: Characterization of p53 and p21 functional interactions in glioma cells en route to apoptosis. J Natl Cancer Inst 14: 1036–1044, 1997

    Google Scholar 

  22. Agarwal MN, Agarwal A, Taylor WR, Stark GR: p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 92: 8493–8497, 1995

    Google Scholar 

  23. Polyak K, Waldman T, He T-C, Kinzler KW, Vogelstein B: Genetic determinants of p53-induced apoptosis and growth arrest. Genes Dev 10: 1945–1952, 1996

    Google Scholar 

  24. Michalovitz D, Halevy O, Oren M: Conditional inhibition of transformation and of cell proliferation by a temperaturesensitive mutant p53. Cell 62: 671–680, 1990

    Google Scholar 

  25. Stewart N, Hicks GG, Paraskevas F, Mowat M: Evidence for a second cell cycle block at G2/M by p53. Oncogene 10: 109–115, 1995

    Google Scholar 

  26. Cross SM, Sanchez CA, Morgan CA, Schimke MK, Ramel S, Idzerda RL, Raskind WH, Reid BJ: A p53-dependent mouse spindle checkpoint. Science 267: 1353–1356, 1995

    Google Scholar 

  27. Vikhanskaya F, Erba E, D'Incalci M, Broggini M: Introduction of wild-type p53 in a human ovarian cancer cell line not expressing endogenous p53. Nucleic Acids Res 22: 1012–1017, 1994

    Google Scholar 

  28. Wang Y, Prives C: Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376: 88–91, 1995

    Google Scholar 

  29. Xiong Y, Hannon G, Zhang H, Casso D, Kobayashi R, Beach D: p21 is a universal inhibitor of the cyclin kinases. Nature (London) 366: 701–704, 1993

    Google Scholar 

  30. Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT: Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59: 4375–4382, 1999

    Google Scholar 

  31. Powell SN, DeFrank JS, Connell P, Eogan M, Preffer F, Dombkowski D, Tang W, Friend S: Differential sensitivity of p53- and p53+ cells to caffeine-induced radiosensitization and override of G2 delay. Cancer Res 55: 1643–1648, 1995

    Google Scholar 

  32. Maheswaran S, Englert C, Bennett P, Heinrich G, Haber DA: The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes Dev 9: 2143–2156, 1995

    Google Scholar 

  33. Badie B, Drazan KE, Kramar MH, Shaked A, Black KL: Adenovirus-mediated p53 gene delivery inhibits 9L glioma growth in rats. Neurol Res 17: 209–216.18, 1995

    Google Scholar 

  34. Badie B, Kramar MH, Lau R, Boothman DA, Economu JS, Black KL: Adenovirus-mediated p53 gene delivery potentiates the radiation-induced growth inhibition of experimental brain tumors. J Neuro-Oncol 37: 217–222, 1998

    Google Scholar 

  35. Kock H, Harris MP, Anderson SC, Machemer T, Hancock W, Sutjipto S, Wills KN, Gregory RJ, Shepard HM, Westphal M, Maneval DC: Adenovirus-mediated p53 gene transfer suppresses growth of human glioblastoma cells in vitro and in vivo. Int J Cancer 67: 808–815, 1996

    Google Scholar 

  36. Lang FF, Yung WK, Raju U, Libunao F, Terry NH, Tofilon PJ: Enhancement of radiosensitivity of wild-type p53 human glioma cells by adenovirus-mediated delivery of the p53 gene. J Neurosurg 89: 125–132, 1998

    Google Scholar 

  37. Li H, Alonso-Vanegas M, Colicos MA, Jung SS, Lochmuller H, Sadikot AF, Snipes GJ, Seth P, Karpati G, Nalbantoglu J: Intracerebral adenovirus-mediated p53 tumor suppressor gene therapy for experimental human glioma. Clin Cancer Res 5: 637–642, 1999

    Google Scholar 

  38. Kaelin WG: The p53 gene family. Oncogene 18: 7701–7705, 1999

    Google Scholar 

  39. Henson JW, Schnitker BL, Correa KM, von Deimling A, Fassbender F, Xu HJ, Benedict WF, Yandell DW, Louis DN: The retinoblastoma gene is involved in malignant progression of astrocytomas Ann Neurol 36: 714–721, 1994

    Google Scholar 

  40. Fueyo J, Gomez-Manzano C, Yung WK, Liu TJ, Alemany R, Bruner JM, Chintala SK, Rao JS, Levin VA, Kyritsis AP: Suppression of human glioma growth by adenovirus-mediated Rb gene transfer. Neurology 50: 1307–1315, 1998a

    Google Scholar 

  41. Jen J, Harper JW, Bigner SH, Bigner DD, Papadopoulos N, Markowitz S, Willson JK, Kinzler KW, Vogelstein B: Deletion of p16 and p15 genes in brain tumors. Cancer Res 54: 6353–6358, 1994

    Google Scholar 

  42. Schmidt EE, Ichimura K, Reifenberger G, Collins VP: CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 54: 6321–6324, 1994

    Google Scholar 

  43. Giani C, Finocchiaro G: Mutation rate of the CDKN2 in malignant gliomas. Cancer Res 54: 6338–6339, 1994

    Google Scholar 

  44. Kyritsis AP, Zhang B, Zhang W, Xiao M, Takeshima H, Bondy ML, Cunningham JE, LevinVA, Bruner J: Mutations of the p16 gene in gliomas. Oncogene 12: 63–67, 1996

    Google Scholar 

  45. Costello JF, Berger MS, Huang H-JS, Cavenee WK: Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res 56: 2405–2410, 1996

    Google Scholar 

  46. Fueyo J, Gomez-Manzano C, Bruner JM, Saito Y, Zhang B, Zhang W, Levin VA, Yung WK, Kyritsis AP: Hypermethylation of the CpG island of p16/CDKN2 correlates with gene inactivation in gliomas. Oncogene 13: 1615–1619, 1996a

    Google Scholar 

  47. Fueyo J, Gomez-Manzano C, Yung WKA, Clayman GL, Liu TJ, Bruner J, Levin VA, Kyritsis AP: Adenovirusmediated p16/CDKN2 gene transfer induces growth arrest and modifies the transformed phenotype of glioma cells. Oncogene 12: 103–110, 1996

    Google Scholar 

  48. Arap W, Nishikawa R, Furnari FB, Cavenee WK, Huang H-SS: Replacement of the p16/CDKN2 gene suppresses human glioma cell growth. Cancer Res 55: 1351–1354, 1995

    Google Scholar 

  49. Chintala SK, Fueyo J, Gomez-Manzano C, Venkaiah B, Bjerkvig R, Yung WKA, Sawaya R, Kyritsis AP, Rao JS: Adenovirus-mediated p16/CDKN2 gene transfer suppresses glioma invasion in vitro. Oncogene 15: 2049–2057, 1997

    Google Scholar 

  50. Sandig V, Brand K, Herwing S, Lukas J, Bartek J, Strauss M: Adenovirally transferred p16INK4/CDKN2 and p53 genes cooperate to induce apoptotic tumor cell death. Nat Med 3: 313–319, 1997

    Google Scholar 

  51. Quelle DE, Zindy F, Ashmun RA, Sherr CJ: Alternative reading frames of the INK4a tumor suppressor gene encode two unrealted proteins capable of inducing cell cycle arrest. Cell 91: 993–1000, 1995

    Google Scholar 

  52. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan KH, Vousden KH, Peters G: The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and mdm2. EMBO J 17: 5001–5014, 1998

    Google Scholar 

  53. De Stanchina E, McCurrach ME, Zindy F, Shieh SY, Ferbeyre G, Samuelson AV, Prives C, Roussel MF, Sherr CJ, Lowe SW: E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev 12: 2434–2442, 1998

    Google Scholar 

  54. Van den Heubel S, Harlow E: Distinct roles for cyclindependent kinases in cell cycle control. Science 262: 2050–2054, 1993

    Google Scholar 

  55. De Azevedo WF Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH: Structural basis for specificity and potency of a flavonoid inhibitor of human cdk2, a cell cycle kinase. Proc Natl Acad Sci USA 93: 2735–2740, 1996

    Google Scholar 

  56. Carlson B, Lahusen T, Singh S, Loaiza-Perez A, Worland PJ, Pestell R, Albanese C, Sausville EA, Senderowicz AM: Down regulation of cyclin D1 by transcriptional repression in MCF-7 human breast carcinoma cells induced by flavopiridol. Cancer Res 59: 4634–4641, 1999

    Google Scholar 

  57. Meijer L: Chemical inhibitors of cyclin-dependent kinases. Trends Cell Biol 6: 393–397, 1996

    Google Scholar 

  58. Shapiro G, Wade HJ: Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest 104: 1645–1653, 1999

    Google Scholar 

  59. Cinti C, Claudio PP, Howard CM, Neri LM, Fu Y, Leoncini L, Tosi GM, Maraldi NM, Giordano A: Genetic alterations disrupting the nuclear localization of the retinoblastoma-related gene Rb2/p130 in human tumor cell lines and primary tumors. Cancer Res 60: 383–389, 2000

    Google Scholar 

  60. Claudio PP, Howard CM, Baldi A, De Luca A, Fu Y, Condorelli G, Sun Y, Colburn N, Calabretta B, Giordano A: p130/Rb2 has growth suppressive properties similar to yet distinctive from those of retinoblastoma family members pRB and p107. Cancer Res 54: 5556–5560, 1994

    Google Scholar 

  61. Tenan M, Benedetti S, Fionocchiaro G: Deletion and trasfection analyses of the p15/MTS2 gene in malignant gliomas. Biochem Biophys Res Commun 217: 195–202, 1995

    Google Scholar 

  62. Chen J, Willingham T, Shuford M, Bruce D, Rushing E, Smith Y, Nisen PD: Effects of ectopic overexpression of p21 (WAF1/CIP1) on aneuploidy and the malignant phenotype of human brain tumor cells. Oncogene 13: 1395–1403, 1996a

    Google Scholar 

  63. Chen J, Willingham T, Shuford M, Nisen PD: Tumor suppression and inhibition of aneuploid cell accumulation in human brain tumor cells by ectopic overexpression of the cyclin-dependent kinase inhibitor p27Kip1. J Clin Invest 97: 1983–1988, 1996b

    Google Scholar 

  64. Simon M, Koster G, Menon AG, Scramm J: Functional evidence for a role of combined CDKN2A (p16-p14(ARF)/CDKN2B (p15) gene inactivation in malignant gliomas. Acta Neuropathol (Berl) 98: 444–452, 1999

    Google Scholar 

  65. Fueyo J, Gomez-Manzano C, Puduvalli VK, Martin-Duque P, Perez-Soler R, Levin VA, Yung WK, Kyritsis AP: Adenovirus-mediated p16 transfer to glioma cells induces G1 arrest and protects from paclitaxel and topotecan: implications for therapy. Int J Oncol 12: 665–669, 1998b

    Google Scholar 

  66. Fueyo J, Gomez-Manzano C, Yung WK, Liu TJ, Alemany R, McDonnell TJ, Shi X, Rao JS, Levin VA, Kyritsis AP: Overexpression of E2F-1 in glioma triggers apoptosis and suppresses tumor growth in vitro and in vivo. Nat Med 4: 685–690, 1998c

    Google Scholar 

  67. Jung J-M, Bruner JM, Ruan S, Langford LA, Kyritsis AP, Kobayashi T, Levin VA, Zhang W: Increased levels of p21WAF1/Cip1 in human brain tumors. Oncogene 11: 2021–2028, 1995

    Google Scholar 

  68. Dirks PB, Rutka JT, Hubbard SL, Mondal S Hamel PA: The E2F-family proteins induce distintc cell cycle regulatory factors in p16-arrested, U-343 astrocytoma cells. Oncogene 17: 867–876, 1998

    Google Scholar 

  69. DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR: Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci USA 94: 7245–7250, 1997

    Google Scholar 

  70. Chen YN, Sharma SK, Ramsey TM, Jiang L, Martin MS, Baker K, Adams PD, Bair KW, Kaelin WG Jr: Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc Natl Acad Sci USA 96: 4325–4329, 1999

    Google Scholar 

  71. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang S, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast and prostate cancer. Science 275: 1943–1946, 1997

    Google Scholar 

  72. Steck PA, Pershouse MA, Jasser SA, Yung WKA, Lin H, Ligon AH, Lauren LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV: Identification of a candidate tumor suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15: 356–362, 1997

    Google Scholar 

  73. Cheney IW, Neuteboom ST, Vaillancourt MT, Ramachandra M, Bookstein R: Adenovirus-mediated gene transfer of MMAC1/PTEN to glioblastoma cells inhibits S phase entry by the recruitment of p27Kip1 into cyclin E/CDK2 complexes. Cancer Res 59: 2318–2323, 1999

    Google Scholar 

  74. Davies MA, Lu Y, Sano T, Fang X, Tang P, LaPushin R, Koul D, Bookstein R, Stokoe D, Yung WKA, Mills GB, Steck PA: Adenoviral transgene expression of 287 MMAC/PTEN in human glioma cells inhibits Akt activation and induce anoikis. Cancer Res 58: 5285–5290, 1998

    Google Scholar 

  75. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ: Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14: 391–396, 2000

    Google Scholar 

  76. Tamura M, Gu J, Danen EH, Takino T, Miyamoto S, Yamada KM: PTEN interactions with focal adhesion kinase and suppression of the extracellular matrix-dependent phosphadylinositol 3-kinase/Akt cell survival pathway. J Biol Chem 274: 20693–20703, 1999

    Google Scholar 

  77. Dyson N, Harlow E: Adenovirus E1A targets key regulators of cell proliferation. Cancer Surv 12: 161–195, 1992

    Google Scholar 

  78. Flint J, Shenk T: Viral transactivating proteins. Annu Rev Genet 31: 177–212, 1997

    Google Scholar 

  79. Nevins JR: E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258: 424–429, 1992

    Google Scholar 

  80. Whyte P, Ruley HE, Harlow E: Two regions of the adenovirus early region 1A proteins are required for transformation. J Virol 62: 257–265, 1988

    Google Scholar 

  81. Whyte P, Williamsom NM, Harlow E: Cellular targets for transformation by the adenovirus E1A proteins. Cell 56: 67–75, 1989

    Google Scholar 

  82. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, Shi YX, Levin VA, Yung WKA, Kyritsis AP: Amutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19: 2–12, 2000

    Google Scholar 

  83. Martuza RL, Malick A, Markert JM, Ruffner KL, Coen DM: Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Science 10: 854–856, 1991

    Google Scholar 

  84. Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL: Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med 9: 938–943, 1995

    Google Scholar 

  85. Andreanski S, Soroceanu L, Flotte ER, Chou J, Market JM, Gillespie GY, Roizman B, Whitley RJ: Evaluation of genetically engineered herpes simplex viruses as oncolytic agents for human malignant brain tumors. Cancer Res 57: 1502–1509, 1997

    Google Scholar 

  86. Chase M, Chung RY, Chiocca EA: An oncolytic viral mutant that delivers the CYP2B1 transgene and augments cyclophosphamide chemotherapy. Nat Biotechnol 16: 444–448, 1998

    Google Scholar 

  87. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, McCormick F: An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274: 373–376, 1996

    Google Scholar 

  88. Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH: ONYX-015, an E1B geneattenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 3: 639–645, 1997

    Google Scholar 

  89. Freytag SO, Rogulski KR, Paielii DL, Gilbert JF, Kim JK: A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther 9: 1323–1333, 1998

    Google Scholar 

  90. Kirn D, Hermiston T, McCormick F: ONYX-015: clinical data are encouraging. Nat Med 4: 1341–1342, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fueyo, J., Gomez-Manzano, C., Liu, TJ. et al. Delivery of Cell Cycle Genes to Block Astrocytoma Growth. J Neurooncol 51, 277–287 (2001). https://doi.org/10.1023/A:1010661131403

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010661131403

Navigation