Skip to main content

Advertisement

Log in

The assessment of the vulnerable atherosclerotic plaque using MR imaging: A brief review

  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

The study of atherosclerotic disease during its natural history and after therapeutic intervention may enhance our understanding of the progression and regression of this disease and will aid in selecting the appropriate medical treatments or surgical interventions. Several invasive and non-invasive imaging techniques are available to assess atherosclerotic disease vessels. Most of these techniques are strong in identifying the morphological features of the disease such as lumenal diameter and stenosis or wall thickness, and in some cases provide an assessment of the relative risk associated with the atherosclerotic disease. However, none of these techniques can fully characterize the composition of the atherosclerotic plaque in the vessel wall and therefore are incapable of identifying the vulnerable plaques. High-resolution, multi-contrast, magnetic resonance (MR) can non-invasively image vulnerable plaques and characterize plaques in terms of lipid and fibrous content and identify the presence of thrombus or calcium. Application of MR imaging opens up whole new areas for diagnosis, prevention, and treatment of atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuster V, Fayad ZA, Badimon JJ. Acute coronary syndromes: biology. Lancet 1999; 353(suppl. 2): SII5-SII9.

    Google Scholar 

  2. Ross R. Atherosclerosis — an inflammatory disease. N Engl J Med 1999; 340: 115-126.

    Google Scholar 

  3. Richardson PD, Davies MJ, Born GV. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989; 2: 941-944.

    Google Scholar 

  4. Galis ZS. Atheroma morphology and mechanical strength. Looks are important, after all — Lose the fat. Circ Res 2000; 86: 1-3.

    Google Scholar 

  5. Rekhter MD, Hicks GW, Brammer DW, et al. Hypercholesterolemia causes mechanical weakening of rabbit atheroma. Circ Res 2000; 86: 101-108.

    Google Scholar 

  6. Fuster V, Lewis A. Conner Memorial Lecture. Mechanisms leading to myocardial infarction: insights from studies of vascular biology. Circulation 1994; 90: 2126-2146.

    Google Scholar 

  7. Stary HC, Chandler AB, Dinsmore RE, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995; 92: 1355-1374.

    Google Scholar 

  8. Fernandez-Ortiz A, Badimon JJ, Falk E, et al. Characterization of the relative thrombogenicity of atherosclerotic plaque components: implications for consequences of plaque rupture. J Am Coll Cardiol 1994; 23: 1562-1569.

    Google Scholar 

  9. Ambrose JA, Tannenbaum MA, Alexopoulos D, et al. Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 1988; 12: 56-62.

    Google Scholar 

  10. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995; 92: 657-671.

    Google Scholar 

  11. Falk E, Fernandez-Ortiz A. Role of thrombosis in atherosclerosis and its complications. Am J Cardiol 1995; 75: 3B-11B.

    Google Scholar 

  12. Moreno PR, Falk E, Palacios IF, et al. Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994; 90: 775-778.

    Google Scholar 

  13. Kaartinen M, Penttila A, Kovanen PT. Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 1994; 90: 1669-1678.

    Google Scholar 

  14. Solberg LA, Strong JP. Risk factors and atherosclerotic lesions. A review of autopsy studies. Arteriosclerosis 1983; 3: 187-198.

    Google Scholar 

  15. Fazio GP, Redberg RF, Winslow T, Schiller NB. Transesophageal echocardiographically detected atherosclerotic aortic plaque is a marker for coronary artery disease. J Am Coll Cardiol 1993; 21: 144-150.

    Google Scholar 

  16. Cohen A, Tzourio C, Bertrand B, et al. Aortic plaque morphology and vascular events: a follow-up study in patients with ischemic stroke. FAPS Investigators. French Study of Aortic Plaques in Stroke. Circulation 1997; 96: 3838-3841.

    Google Scholar 

  17. The French study of aortic plaques in stroke group. Atherosclerotic disease of the aortic arch as a risk factor for recurrent ischemic stroke. N Engl J Med 1996; 334: 1216-1221.

    Google Scholar 

  18. Ambrose JA. Angiographic correlations of advanced coronary lesions in acute coronary syndromes. In: Fuster V (ed), Syndromes of atherosclerosis: correlations of clinical imaging and pathology. Armonk, NY: Futura Publishing, 1996; 105-122.

    Google Scholar 

  19. Dinsmore RE, Rivitz SM. Imaging techniques in carotid and peripheral vascular disease. In: Fuster V (ed), Syndromes of atherosclerosis: correlations of clinical imaging and pathology. Armonk, NY: Futura Publishing, 1996; 277-289.

    Google Scholar 

  20. Kohler TR. Imaging of carotid artery lesions: a sugeon's view. In: Fuster V (ed), Syndromes of atherosclerosis: correlations of clinical imaging and pathology. Armonk, NY: Futura Publishing, 1996; 205-233.

    Google Scholar 

  21. Nissen SE, De Franco AC, Tuzcu EM, Moliterno DJ. Coronary intravascular ultrasound: diagnostic and interventional applications. Coron Artery Dis 1995; 6: 355-367.

    Google Scholar 

  22. Ge J, Chirillo F, Schwedtmann J, et al. Screening of ruptured plaques in patients with coronary artery disease by intravascular ultrasound. Heart 1999; 81: 621-627.

    Google Scholar 

  23. Uchida Y, Nakamura F, Tomaru T, et al. Prediction of acute coronary syndromes by percutaneous coronary angioscopy in patients with stable angina. Am Heart J 1995; 130: 195-203.

    Google Scholar 

  24. Thieme T, Wernecke KD, Meyer R, et al. Angioscopic evaluation of atherosclerotic plaques: validation by histomorphologic analysis and association with stable and unstable coronary syndromes. JACC 1996; 28: 1-6.

    Google Scholar 

  25. Heiss G, Sharrett AR, Barnes R, et al. Carotid atherosclerosis measured by B-mode ultrasound in populations: associations with cardiovascular risk factors in the ARIC study. Am J Epidemiol 1991; 134: 250-256.

    Google Scholar 

  26. Weinberger J, Azhar S, Danisi F, et al. A new noninvasive technique for imaging atherosclerotic plaque in the aortic arch of stroke patients by transcutaneous real-time B-mode ultrasonography: an initial report. Stroke 1998; 29: 673-676.

    Google Scholar 

  27. Weinberger J, Ramos L, et al. Morphologic and dynamic changes of atherosclerotic plaque at the carotid artery bifurcation: sequential imaging by real time B-mode ultrasonography. J Am Coll Cardiol 1988; 12: 1515-1521.

    Google Scholar 

  28. Agatston AS, Janowitz WR, Hildner FJ, et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990; 15: 827-832.

    Google Scholar 

  29. Callister TQ, Raggi P, Cooil B, et al. Effect of HMG-CoA reductase inhibitors on coronary artery disease as assessed by electron-beam computed tomography. N Engl J Med 1998; 339: 1972-1978.

    Google Scholar 

  30. Wood ML, Wehrli FW. Principles of Magnetic Resonance Imaging. In: Stark DD, Bradley WG (eds), Magnetic Resonance Imaging. 3rd ed. St Louis: Mosby, 1999; 1-14.

    Google Scholar 

  31. Soila K, Nummi P, Ekfors T, et al. Proton relaxation times in arterial wall and atheromatous lesions in man. Invest Radiol 1986; 21: 411-415.

    Google Scholar 

  32. Maynor CH, Charles HC, Herfkens RJ, et al. Chemical shift imaging of atherosclerosis at 7.0 Tesla. Invest Radiol 1989; 24: 52-60.

    Google Scholar 

  33. Pearlman JD, Zajicek J, Merickel MB, et al. High-resolution 1H NMR spectral signature from human atheroma. Magn Reson Med 1988; 7: 262-279.

    Google Scholar 

  34. Mohiaddin RH, Firmin DN, Underwood SR, et al. Chemical shift magnetic resonance imaging of human atheroma. Br Heart J 1989; 62: 81-89.

    Google Scholar 

  35. Vinitski S, Consigny PM, Shapiro MJ, et al. Magnetic resonance chemical shift imaging and spectroscopy of atherosclerotic plaque. Invest Radiol 1991; 26: 703-714.

    Google Scholar 

  36. Gold GE, Pauly JM, Glover GH, et al. Characterization of atherosclerosis with a 1.5-T imaging system. J Magn Reson Imaging 1993; 3: 399-407.

    Google Scholar 

  37. Altbach MI, Mattingly MA, et al. Magnetic resonance imaging of lipid deposits in human atheroma via a stimulated-echo diffusion-weighted technique. Magn Reson Med 1991; 20: 319-326.

    Google Scholar 

  38. Toussaint JF, Southern JF, et al. 13C-NMR spectrocopy of human atherosclerotic lesions. Relation between fatty acid saturation, cholesteryl ester content, and luminal obstruction. Arterioscler Thromb 1994; 14: 1951-1957.

    Google Scholar 

  39. Toussaint JF, Southern JF, et al. T2-weighted contrast for NMR characterization of human atherosclerosis. Arterioscler Thromb Vasc Biol 1995; 15: 1533-1542.

    Google Scholar 

  40. Kaufman L, Crooks LE, Sheldon PE, et al. Evaluation of NMR imaging for detection and quantification of obstructions in vessels. Invest Radiology 1982; 17: 554-560.

    Google Scholar 

  41. Herfkens RJ, Higgins CB, Hricak H, et al. Nuclear magnetic resonance imaging of atherosclerotic disease. Radiology 1983; 148: 161-166.

    Google Scholar 

  42. Martin AJ, Gotlieb AI, Henkelman RM. High-resolution MR imaging of human arteries. J Magn Reson Imaging 1995; 5: 93-100.

    Google Scholar 

  43. Merickel MB, Berr S, Spetz K, et al. Non-invasive quantitative evaluation of atherosclerosis using MRI and image analysis. Arterioscler Thromb 1993; 13: 1180-1186.

    Google Scholar 

  44. Merickel MB, Carman CS, Brookeman JR, et al. Identification and 3-D quantification of atherosclerosis using magnetic resonance imaging. Comput Biol Med 1988; 18: 89-102.

    Google Scholar 

  45. Yuan C, Tsuruda JS, Beach KN, et al. Techniques for high-resolution MR imaging of atherosclerotic plaque. J Magn Reson Imaging 1994; 4: 43-49.

    Google Scholar 

  46. von Ingersleben G, Schmiedl UP, Hatsukami TS, et al. Characterization of atherosclerotic plaques at the carotid bifurcation: correlation of high-resolution MR imaging with histologic analysis — preliminary study. Radiographics 1997; 17: 1417-1423.

    Google Scholar 

  47. Toussaint JF, LaMuraglia GM, Southern JF, et al. Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 1996; 94: 932-938.

    Google Scholar 

  48. Yuan C, Skinner MP, Kaneko E, et al. Magnetic resonance imaging to study lesions of atherosclerosis in the hyperlipidemic rabbit aorta. Magnetic Resonance Imaging 1996; 14: 93-102.

    Google Scholar 

  49. Skinner MP, Yuan C, Mitsumori L, et al. Serial magnetic resonance imaging of experimental atherosclerosis detects lesion fine structure, progression and complications in vivo. Nature Medicine 1995; 1: 69-73.

    Google Scholar 

  50. Fayad ZA, Nahar T, Fallon JT, et al. In vivo MR evaluation of atherosclerotic plaques in the human thoracic aorta: a comparison with TEE. Circulation 2000; 101: 2503-2509.

    Google Scholar 

  51. Fayad ZA, Fuster V. Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann N Y Acad Sci 2000; 902: 173-186.

    Google Scholar 

  52. Worthley SG, Helft G, Fuster V, et al. High resolution ex vivo magnetic resonance imaging of in situ coronary and aortic atherosclerotic plaque in a porcine model. Atherosclerosis 2000; 150: 321-329.

    Google Scholar 

  53. Worthley SG, Helft G, Fuster V, et al. Noninvasive in vivo magnetic resonance imaging of experimental coronary artery lesions in a porcine model. Circulation 2000; 101: 2956-2961.

    Google Scholar 

  54. Shinnar M, Fallon JT, Wehrli S, et al. The diagnostic accuracy of ex vivo magnetic resonance imaging for human atherosclerotic plaque characterization. Arterioscler Thromb Vasc Biol 1999; 19: 2756-2761.

    Google Scholar 

  55. Toussaint JF, Southern JF, Fuster V, Kantor HL. Water diffusion properties of human atherosclerosis and thrombosis measured by pulse field gradient nuclear magnetic resonance. Arteriosclerosis, Thrombosis & Vascular Biology 1997; 17: 542-546.

    Google Scholar 

  56. Moody AR, Allder S, Lennox G, et al. Direct magnetic resonance imaging of carotid artery thrombus in acute stroke. Lancet 1999; 353: 122-123.

    Google Scholar 

  57. Moody AR, Pollock JG, O'Connor AR, Bagnall M. Lower-limb deep venous thrombosis: direct MR imaging of the thrombus. Radiology 1998; 209: 349-355.

    Google Scholar 

  58. Yuan C, Petty C, O'Brien KD, et al. In vitro and in situ magnetic resonance imaging signal features of atherosclerotic plaque-associated lipids. Arterioscler Thromb Vasc Biol 1997; 17: 1496-1503.

    Google Scholar 

  59. McConnell MV, Aikawa M, Maier SE, et al. MRI of rabbit atherosclerosis in response to dietary cholesterol lowering. Arterioscler Thromb Vasc Biol 1999; 19: 1956-1959.

    Google Scholar 

  60. Worthley SG, Helft G, Osende JI, et al. Serial evaluation of atherosclerosis with in vivo MRI: study of atorvastatin and avasimibe in WHHL rabbits. Circulation 2000; 102: II-809.

    Google Scholar 

  61. Fayad ZA, Fallon JT, Shinnar M, et al. Noninvasive in vivo high-resolution magnetic resonance imaging of atherosclerotic lesions in genetically engineered mice. Circulation 1998; 98: 1541-1547.

    Google Scholar 

  62. Fayad ZA, Connick TJ, Axel L. An improved quadrature or phased-array coil for MR cardiac imaging. Magn Reson Med 1995; 34: 186-193.

    Google Scholar 

  63. Edelman RR, Chien D, Kim D. Fast selective black blood MR imaging. Radiology 1991; 181: 655-660.

    Google Scholar 

  64. Simonetti OP, Finn JP, White RD, et al. ‘Black blood’ T2-weighted inversion-recovery MR imaging of the heart. Radiology 1996; 199: 49-57.

    Google Scholar 

  65. Luk-Pat GT, Gold GE, Olcott EW, et al. High-resolution three-dimensional in vivo imaging of atherosclerotic plaque. Magn Reson Med 1999; 42: 762-771.

    Google Scholar 

  66. Fayad ZA, Nahar T, Fallon JT, et al. In vivo MR characterization of human aortic atherosclerotic plaques. Proc Intl Soc Mag Reson 1999; 1: 80.

    Google Scholar 

  67. Fayad ZA, Tamana N, Badimon JJ, et al. In-vivo MR characterization of plaques in the thoracic aorta. Circulation 1998; 98: I-515.

    Google Scholar 

  68. Shinnar M, Gallo R, Fayad ZA, et al. In vivo magnetic resonance imaging of post angioplasty coronary vessel wall lesion in pigs. JACC 1998; 33: 339A.

    Google Scholar 

  69. Fayad ZA, Fuster V, Fallon JT, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 2000; 102: 506-510.

    Google Scholar 

  70. Alexander AL, Buswell HR, Sun Y, et al. Intracranial black-blood MR angiography with high-resolution 3D fast spin echo. Magn Reson Med 1998; 40: 298-310.

    Google Scholar 

  71. Du YP, Parker DL, Davis WL, Cao G. Reduction of partial-volume artifacts with zero-filled interpolation in three-dimensional MR angiography. J Magn Reson Imaging 1994; 4: 733-741.

    Google Scholar 

  72. Fayad ZA, Hardy CJ, Giaquinto R, et al. Improved high resolution MRI of human coronary lumen and plaque with a new cardiac coil. Circulation 2000; 102: II-399.

    Google Scholar 

  73. Yuan C, Murakami JW, et al. Phased-array magnetic resonance imaging of the carotid artery bifurcation: preliminary results in healthy volunteers and a patient with atherosclerotic disease. J Magn Reson Imaging 1995; 5: 561-565.

    Google Scholar 

  74. Pachot-Clouard M, Vaufrey F, Darasse L, Toussaint JF. Magnetization transfer characteristics in atherosclerotic plaque components assessed by adpated binomial preparation pulses. MAGMA 1998; 7: 9-15.

    Google Scholar 

  75. Lin W, Abendschein DR, Haacke EM. Contrast-enhanced magnetic resonance angiography of carotid arterial wall in pigs. Journal of Magnetic Resonance Imaging 1997; 7: 183-190.

    Google Scholar 

  76. Melhem ER, Jara H, Yucel EK. Black blood MR angiography using multislab three-dimensional TI-weighted turbo spin-echo technique: imaging of intracranial circulation. Am J Roentgenol 1997; 169: 1418-1420.

    Google Scholar 

  77. Steinman DA, Rutt BK. On the nature and reduction of plaque-mimicking flow artifacts in black blood MRI of the carotid bifurcation. Magn Reson Med 1998; 39: 635-641.

    Google Scholar 

  78. Ehman RL, Felmlee JP. Adaptive technique for high-definition MR imaging of moving structures. Radiology 1989; 173: 255-263.

    Google Scholar 

  79. Botnar RM, Stuber M, Danias PG, et al. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation 1999; 99: 3139-3148.

    Google Scholar 

  80. Hochman JS, Phillips WJ, Ruggieri D, Ryan SF. The distribution of atherosclerotic lesions in the coronary arterial tree: relation to cardiac risk factors. Am Heart J 1988; 116: 1217-1222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fayad, Z.A. The assessment of the vulnerable atherosclerotic plaque using MR imaging: A brief review. Int J Cardiovasc Imaging 17, 165–177 (2001). https://doi.org/10.1023/A:1010611530845

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010611530845

Navigation