Skip to main content
Log in

Mechanism of tRNA Translocation on the Ribosome

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

During the translocation step of the elongation cycle of peptide synthesis two tRNAs together with the mRNA move synchronously and rapidly on the ribosome. Translocation is catalyzed by the elongation factor G (EF-G) and requires GTP hydrolysis. The fundamental biochemical features of the process were worked out in the 1970–80s, to a large part by A.S. Spirin and his colleagues. Recent results from pre-steady-state kinetic analysis and cryoelectron microscopy suggest that translocation is a multistep dynamic process that entails large-scale structural rearrangements of both ribosome and EF-G. Kinetic and thermodynamic data, together with the structural information on the conformational changes in the ribosome and EF-G, provide a detailed mechanistic model of translocation and suggest a mechanism of translocation catalysis by EF-G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spirin, A.S., Prog. Nucleic Acids Res. Mol. Biol., 1985, vol. 32, pp. 75–114.

    Google Scholar 

  2. Spirin, A.S., Ribosome Structure and Protein Biosynthesis, Menlo Park, California: Benjamin/Cummings, 1986.

    Google Scholar 

  3. Spirin, A.S., Ribosomes, New York: Kluwer Acad./Plenum, 1999.

    Google Scholar 

  4. Rodnina, M.V., Stark, H., Savelsbergh, A., Wieden, H.-J., Mohr, D., Matassova, N.B., Peske, F., Daviter, T., Gualerzi, C.O., and Wintermeyer, W., Biol. Chem., 2000, vol. 381, pp. 377–387.

    Google Scholar 

  5. Rodnina, M.V., Pape, T., Savelsbergh, A., Mohr, D., Matassova, N.B., and Wintermeyer, W., The Ribosome. Structure, Function, Antibiotics, and Cellular Interactions, Garrett, R.A., Douthwaite, S.R., Liljas, A., Matheson, A.T., Moore, P.B., and Noller, H.F., Eds., Washington, DC: ASM, 2000, pp. 301–318.

    Google Scholar 

  6. Agrawal, R.K., Heagle, A.B., Penczek, P., Grassucci, R.A., and Frank, J., Nature Struct. Biol., 1999, vol. 6, pp. 643–647.

    Google Scholar 

  7. Agrawal, R.K., Penczek, P., Grassucci, R.A., and Frank, J., Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 6134–6138.

    Google Scholar 

  8. Stark, H., Rodnina, M.V., Wieden, H.-J., van Heel, M., and Wintermeyer, W., Cell, 2000, vol. 100, pp. 301–309.

    Google Scholar 

  9. Frank, J. and Agrawal, R.K., Nature, 2000, vol. 406, pp. 318–322.

    Google Scholar 

  10. Gavrilova, L.P. and Spirin, A.S., Mol. Biol., 1972, vol. 6, pp. 248–254.

    Google Scholar 

  11. Gavrilova, L.P. and Spirin, A.S., Methods Enzymol., 1974, vol. 30, pp. 452–462.

    Google Scholar 

  12. Belitsina, N.V., Glukhova, M.A., and Spirin, A.S., J. Mol. Biol., 1976, vol. 108, pp. 609–613.

    Google Scholar 

  13. Modolell, J., Girbes, T., and Vazquez, D., FEBS Lett., 1975, vol. 60, pp. 109–113.

    Google Scholar 

  14. Bourne, H.R., Sanders, D.A., and McCormick, F., Nature, 1991, vol. 349, pp. 117–127.

    Google Scholar 

  15. Brune, M., Hunter, J.L., Corrie, J.E., and Webb, M.R., Biochemistry, 1994, vol. 33, pp. 8262–8271.

    Google Scholar 

  16. Rodnina, M.V., Savelsbergh, A., Matassova, N.B., Katunin, V.I., Semenkov, Y.P., and Wintermeyer, W., Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 9586–9590.

    Google Scholar 

  17. Rodnina, M.V., Savelsbergh, A., Katunin, V.I., and Wintermeyer, W., Nature, 1997, vol. 385, pp. 37–41.

    Google Scholar 

  18. Paulsen, H., Robertson, J.M., and Wintermeyer, W., J. Mol. Biol., 1983, vol. 167, pp. 411–426.

    Google Scholar 

  19. Johnson, A.E., Adkins, H.J., Matthews, E.A., and Cantor, C.R., J. Mol. Biol., 1982, vol. 156, pp. 113–140.

    Google Scholar 

  20. Stark, H., Orlova, E.V., Rinke-Appel, J., Jünke, N., Mueller, F., Rodnina, M.V., Wintermeyer, W., Brimacombe, R., and van Heel, M., Cell, 1997, vol. 88, pp. 19-28.

    Google Scholar 

  21. Moazed, D. and Noller, H.F., Cell, 1989, vol. 57, pp. 585–597.

    Google Scholar 

  22. Moazed, D. and Noller, H.F., Nature, 1989, vol. 342, pp. 142–148.

    Google Scholar 

  23. Agrawal, R.K., Spahn, C.M., Penczek, P., Grassucci, R.A., Nierhaus, K.H., and Frank, J., J. Cell Biol., 2000, vol. 150, pp. 447–460.

    Google Scholar 

  24. Semenkov, Y.P., Shapkina, T.G., and Kirillov, S., Biochimie, 1992, vol. 25, pp. 411–417.

    Google Scholar 

  25. Semenkov, Y., Shapkina, T., Makhno, V., and Kirillov, S., FEBS Lett., 1992, vol. 296, pp. 207–210.

    Google Scholar 

  26. Lill, R., Robertson, J.M., and Wintermeyer, W., Biochemistry, 1986, vol. 25, pp. 3245–3255.

    Google Scholar 

  27. Lill, R., Robertson, J.M., and Wintermeyer, W., EMBO J., 1989, vol. 8, pp. 3933–3938.

    Google Scholar 

  28. Joseph, S. and Noller, H.F., EMBO J., 1998, vol. 17, pp. 3478–3483.

    Google Scholar 

  29. Paulsen, H. and Wintermeyer, W., Biochemistry, 1986, vol. 25, pp. 2749–2756.

    Google Scholar 

  30. Robertson, J.M., Paulsen, H., and Wintermeyer, W., J. Mol. Biol., 1986, vol. 192, pp. 351–360.

    Google Scholar 

  31. Lill, R. and Wintermeyer, W., J. Mol. Biol., 1987, vol. 196, pp. 137–148.

    Google Scholar 

  32. Kirillov, S.V., Makarov, E.M., and Semenkov, Yu.P., FEBS Lett., 1983, vol. 157, pp. 91–94.

    Google Scholar 

  33. Semenkov, Y.P., Rodnina, M.V., and Wintermeyer, W., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 12183–12188.

    Google Scholar 

  34. Robertson, J.M. and Wintermeyer, W., J. Mol. Biol., 1987, vol. 196, pp. 525–540.

    Google Scholar 

  35. Gnirke, A., Geigenmuller, U., Rheinberger, H.J., and Nierhaus, K.H., J. Biol. Chem., 1989, vol. 264, pp. 7291–7301.

    Google Scholar 

  36. Bilgin, N., Claesens, F., Pahverk, H., and Ehrenberg, M., J. Mol. Biol., 1992, vol. 224, pp. 1011–1027.

    Google Scholar 

  37. Rodnina, M.V., Fricke, R., and Wintermeyer, W., Biochemistry, 1994, vol. 33, pp. 12267–12275.

    Google Scholar 

  38. Semenkov, Y.P., Rodnina, M.V., and Wintermeyer, W., Nature Struct. Biol., 2000, vol. 7, pp. 1027–1031.

    Google Scholar 

  39. Kim, D.F. and Green, R., Mol. Cell, 1999, vol. 4, pp. 859–864.

    Google Scholar 

  40. Nissen, P., Hansen, J., Ban, N., Moore, P.B., and Steitz, T.A., Science, 2000, vol. 289, pp. 920–930.

    Google Scholar 

  41. Baca, O.G., Rohrbach, M.S., and Bodley, J.W., Biochemistry, 1976, vol. 15, pp. 4570–4574.

    Google Scholar 

  42. Mohr, D., Wintermeyer, W., and Rodnina, M.V., EMBO J., 2000, vol. 19, pp. 3458–3464.

    Google Scholar 

  43. Peske, F., Matassova, N.B., Savelsbergh, A., Rodnina, M.V., and Wintermeyer, W., Mol. Cell., 2000, vol. 6, pp. 501–505.

    Google Scholar 

  44. Savelsbergh, A., Matassova, N.B., Rodnina, M.V., and Wintermeyer, W., J. Mol. Biol., 2000, vol. 300, pp. 951–961.

    Google Scholar 

  45. Vale, R.D., J. Cell. Biol., 1996, vol. 135, pp. 291–302.

    Google Scholar 

  46. Sablin, E.P., Kull, F.J., Cooke, R., Vale, R.D., and Fletterick, R.J., Nature, 1996, vol. 380, pp. 555–559.

    Google Scholar 

  47. Geeves, M.A. and Holmes, K.C., Annu. Rev. Biochem., 1999, vol. 68, pp. 687–728.

    Google Scholar 

  48. Czworkowski, J. and Moore, P.B., Biochemistry, 1997, vol. 36, pp. 10327–10334.

    Google Scholar 

  49. Laurberg, M., Kristensen, O., Martemyanov, K., Gudkov, A.T., Nagaev, I., Hughes, D., and Liljas, A., J. Mol. Biol., 2000, vol. 303, pp. 593–603.

    Google Scholar 

  50. Johanson, U. and Hughes, D., Gene, 1994, vol. 143, pp. 55–59.

    Google Scholar 

  51. Johanson, U., Ævarsson, A., Liljas, A., and Hughes, D., J. Mol. Biol., 1996, vol. 258, pp. 420–432.

    Google Scholar 

  52. Ævarsson, A., Brazhnikov, E., Garber, M., Zheltonosova, J., Chirgadze, al-Karadaghi, S., Svensson, L.A., and Liljas, A., EMBO J., 1994, vol. 13, pp. 3669–3677.

    Google Scholar 

  53. Al-Karadaghi, S., Ævarsson, A., Garber, M., Zheltonosova, J., and Liljas, A., Structure, 1996, vol. 4, pp. 555–565.

    Google Scholar 

  54. Czworkowski, J., Wang, J., Steitz, T.A., and Moore, P.B., EMBO J., 1994, vol. 13, pp. 3661–3668.

    Google Scholar 

  55. Borowski, C., Rodnina, M.V., and Wintermeyer, W., Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 4202–4206.

    Google Scholar 

  56. Spirin, A.S., Dokl. Akad. Nauk SSSR, 1968, vol. 179, pp. 1467–1470.

    Google Scholar 

  57. Spirin, A., Cold Spring Harbor Symp. Quant. Biol., 1968, vol. 34, pp. 197–207.

    Google Scholar 

  58. Bretscher, M.S., Nature, 1968, vol. 218, pp. 675–677.

    Google Scholar 

  59. Spirin, A.S., Baranov, V.I., Polubesov, G.S., Serdyuk, I.N., and May, R.P., J. Mol. Biol., 1987, vol. 194, pp. 119–126.

    Google Scholar 

  60. Serdyuk, I., Baranov, V., Tsalkov, T., Gulyamova, D., Pavlov, M., Spirin, A., and May, R., Biochimie, 1992, vol. 74, pp. 299–306.

    Google Scholar 

  61. Stark, H., Mueller, F., Orlova, E.V., Schatz, M., Dube, P., Erdemir, T., Zemlin, F., Brimacombe, R., and van Heel, M., Structure, 1995, vol. 3, pp. 815–821.

    Google Scholar 

  62. Stark, H., Rodnina, M.V., Rinke-Appel, J., Brimacombe, R., Wintermeyer, W., and van Heel, M., Nature, 1997, vol. 389, pp. 403–406.

    Google Scholar 

  63. Rodnina, M.V., Savelsbergh, A., and Wintermeyer, W., FEMS Microbiol. Rev., 1999, vol. 23, pp. 317–333.

    Google Scholar 

  64. van Loock, M.S., Agrawal, R.K., Gabashvili, I.S., Qi, L., Frank, J., and Harvey, S.C., J. Mol. Biol., 2000, vol. 304, pp. 507–515.

    Google Scholar 

  65. Spirin, A.S., Prog. Nucleic Acid. Res. Mol. Biol., 1978, vol. 21, pp. 39–62.

    Google Scholar 

  66. Makarov, E.M., Katunin, V.L., Odintsov, V.B., Semenkov, Yu.P., and Kirillov, S.V., Mol. Biol., 1984, vol. 18, pp. 1342–1347.

    Google Scholar 

  67. Berg, P., Bergmann, F.H., Ofengand, E.J., and Dieckmann, M., J. Biol. Chem., 1961, vol. 236, pp. 1726–1734.

    Google Scholar 

  68. Leahy, J., Glassman, E., and Schweet, R.S., J. Biol. Chem., 1960, vol. 235, pp. 3209–3212.

    Google Scholar 

  69. Papas, T.S, and Peterkofsky, A., Biochemistry, 1972, vol. 11, pp. 4602–4608.

    Google Scholar 

  70. Jencks, W.P. and Gilchrist, M., J. Am. Chem. Soc., 1964, vol. 86, pp. 4651–4654.

    Google Scholar 

  71. Dixon, M. and Webb, E.C., Enzymes, NewYork, San Francisco: Academic Press, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodnina, M.V., Semenkov, Y.P., Savelsbergh, A. et al. Mechanism of tRNA Translocation on the Ribosome. Molecular Biology 35, 559–568 (2001). https://doi.org/10.1023/A:1010523026531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010523026531

Navigation