Skip to main content
Log in

Development of an integrative, lacZ transcriptional-fusion plasmid vector for Streptococcus mutans and its use to isolate expressed genes

  • Published:
Methods in Cell Science

Abstract

A new integrational vector, pFP1, containing a promoterless lacZ gene has been constructed for use with Streptococcus mutans. The vector can be grown in Escherichia coli, but cannot replicate in S. mutans. pFP1 can be transformed into S. mutans with selection for kanamycin resistance. It integrates into the chromosome when homologous DNA is present in the vector. pFP1 provides a way for cloning and identifying new genes of S. mutans. When a number of S. mutans transformants were tested on agar containing different sugars, some 19 distinct clones with sucrose- and/or glucose-responsive promoters were isolated. Sequence analysis indicated that the cloned DNA encoded all or part of 29 putative proteins with 52% to 100% similarity to known proteins. When assayed for β-galactosidase activity in BTR medium containing 2% sucrose, glucose or maltose, several genes showed some evidence of sugar regulation, including gtfBK, ftf, scrA, and most dramatically for sucrose regulation, fruA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdullah KM, Lo RYC, Mellors A (1991). Cloning, nucleotide sequence, and expression of the Pasteurella haemolytica A1 glycoprotease gene. J Bacteriol 173: 5597–5603.

    Google Scholar 

  2. Adams MD, Wagner LM, Graddis JJ, Landick R, Antonucci TK, Gibson AL, Oxender DL (1990). Nucleotide sequence and genetic characterization reveal six essential genes for the Liv-I and LS transport systems of Escherichia coli. J Biol Chem 265: 11436–1443.

    Google Scholar 

  3. Atshul SF, Gish W, Myers EW, Lipman DJ (1990). Basic local alignment tool. J Mol Biol 215: 403–410.

    Google Scholar 

  4. Axelsson L, Holck A (1995). The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 177: 2125–2137.

    Google Scholar 

  5. Buist G, Kok J, Leenhouts KJ, Dabrowska M, Venema G, Haandrikman AJ (1995). Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation. J Bacteriol 177: 1554–1563.

    Google Scholar 

  6. Burland V, Plunkett G III, Daniels DL, Blattner FR (1993). DNA sequence and analysis of 136 kilobases of the Escherichia coli genome: Organizational symmetry around the origin of replication. Genomics 16: 551–561.

    Google Scholar 

  7. Burne RA, Penders JE (1992). Characterization of the Streptococcus mutans GS-5 fruA gene encoding exobeta-D-fructosidase. Infect Immun 60: 4621–4632.

    Google Scholar 

  8. Cancilla MR, Davidson BE, Hillier AJ, Nguyen NY, Thompson J (1995). The Lactococcus lactis triosephosphate isomerase gene, tpi, is monocistronic. Microbiology 141: 229–238.

    Google Scholar 

  9. de Zamaroczy M, Delorme F, Elmerich C (1990). Characterization of three different nitrogen-regulated promoter regions for the expression of glnB and glnA in Azospirillum brasilense. Mol Gen Genet 224: 421–430.

    Google Scholar 

  10. Ebbole DJ, Zalkin H (1987). Cloning and characterization of a 12-gene cluster from Bacillus subtilis encoding nine enzymes for de novo purine nucleotide synthesis. J Biol Chem 262: 8274–8287.

    Google Scholar 

  11. Ebbole DJ, Zalkin H (1988). Detection of pur operonattenuated mRNA and accumulated degradation intermediates in Bacillus subtilis. J Biol Chem 263: 10894–10902.

    Google Scholar 

  12. Fleischmann RD, Adams MD, White JM, McKenney K, Sutton G, FitzHugh W, Fields C, Gocayne JD, Scott J, Shirley R, Liu L-I, Glodek A, Kelley JM, Weidman JF, Phillips CA, Spriggs T, Hedblom E, Cotton MD, Utterback TR, Hanna MC, Nguyen DT, Saudek DM, Brandon RC, Fine LD, Fritchman JL, Fuhrmann JL, Geoghagen NSM, Gnehm CL, McDonald LA, Small KV, Fraser CM, Smith HO, Venter JC (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496–512.

    Google Scholar 

  13. Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman JL, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb J-F, Dougherty BA, Bott KF, Hu P-C, Lucier TS, Peterson SN, Smith HO, Hutchison CA III, Venter JC (1994). The minimal gene complement of Mycoplasma genitalium. Science 270: 397–403.

    Google Scholar 

  14. Fuerst P, Moesch HU, Solioz M (1989). A protein of unusual composition from Enterococcus faecium. Nucleic Acids Res 17: 6724.

    Google Scholar 

  15. Godon J-J, Chopin M-C, Ehrlich SD (1992). Branched-chain amino acid biosynthesis genes in Lactococcus subsp. lactis. J Bacteriol 174: 6580–6589.

    Google Scholar 

  16. Goodlove PE, Cunningham PR, Parker J, Clark DP (1989). Cloning and sequence analysis of the fermentative alcohol-dehydrogenase-encoding gene of Escherichia coli. Gene 85: 209–214.

    Google Scholar 

  17. Gutierrez JA, Crowley PJ, Brown DP, Hillman JD, Youngman P, Bleiweis AS (1996). Insertional mutagenesis and recovery of interrupted genes of Streptococcus mutans by using transposon Tn917: Preliminary characterization of mutants displaying acid sensitivity and nutritional requirements. J Bacteriol 178: 4166–4175.

    Google Scholar 

  18. Higgins CF, Hiles ID, Salmond GPC, Gill DR, Downie JA, Evans IJ, Holland IB, Gray L, Buckel SD, Bell AW, Hermodson MA (1986). A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria. Nature 323: 448–450.

    Google Scholar 

  19. Honda O, Kato C, Kuramitsu HK (1990). Nucleotide sequence of the Streptococcus mutans gtfD gene encoding the glucosyltransferase-S enzyme. J Gen Microbiol 136: 2099–2150.

    Google Scholar 

  20. Hudson MC, Curtiss R III (1990). Regulation of expression of Streptococcus mutans genes important for virulence. Infect Immun 58: 464–470.

    Google Scholar 

  21. Kiska DL, Macrina F (1994). Genetic regulation of fructosyltransferase in Streptococcus mutans. Infect Immun 62: 1241–1251.

    Google Scholar 

  22. Lane MA, Bayles KW, Yasbin RE (1991). Identification and initial characterization of glucoserepressible promoters of Streptococcus mutans. Gene 100: 225–229.

    Google Scholar 

  23. Loeshe WJ (1986). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50: 353–380.

    Google Scholar 

  24. Ludwig W, Weizenegger M, Beltz D, Leidel E, Lenz T, Ludvigsen A, Moellenhoff D, Wenzig P, Schleifer KH (1990). Complete nucleotide sequences of seven eubacterial genes coding for the elongation factor Tu: Functional, structural and phylogenetic evaluations. Arch Microbiol 153: 241–247.

    Google Scholar 

  25. Makaroff CA, Zalkin H, Switzer RL, Vollmer SJ (1983). Cloning of the Bacillus subtilis glutamine phosphoribosylpyrophosphate amidotransferase gene in Escherichia coli: nucleotide sequence determination and properties of the plasmid-encoded enzyme. J Biol Chem 258: 10586–10593.

    Google Scholar 

  26. Mayo B, Kok J, Venema K, Bockelmann W, Teuber M, Reinke H, Venema G (1991). Molecular cloning and sequence analysis of the X-prolyldipeptidylaminopeptidase gene from Lactococcus lactis subsp. cremoris. Appl Environ Microbiol 57: 38–44.

    Google Scholar 

  27. Nardi M, Chopin MC, Chopin A, Cals MM, Gripon JC (1991). Cloning and DNA sequence analysis of an X-prolyl dipeptidyl aminopeptidase gene from Lactococcus lactis subp. lactis NCDO763. Appl Environ Microbiol 57: 45–50.

    Google Scholar 

  28. Nicholson WL, Setlow P (1990). Sporulation, germination and outgrowth. In: Harwood CR, Cutting SM (eds), Molecular biological methods for Bacillus, pp 391–429. West Sussex, England: John Wiley and Sons, Ltd.

    Google Scholar 

  29. O'Gaora P, Maskell D, Coleman D, Cafferkey M, Dougan D (1989). Cloning and characterization of the serC and aroA genes of Yersinia enterocolitica, and construction of an aroA mutant. Gene 84: 23–30.

    Google Scholar 

  30. Ogasawara N, Nakai S, Yoshikawa H (1994). Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res 1: 1–14.

    Google Scholar 

  31. Pearce BJ, Yin YB, Masure HR (1993). Genetic identification of exported proteins in Streptococcus pneumoniae. Mol Microbiol 9: 1037–1050.

    Google Scholar 

  32. Perego M (1993). Integrational vectors for genetic manipulation in Bacillus subtilis. In: Sonenshein AL, Losick R, Hoch JA (eds), Bacillus subtilis and other gram-positive bacteria, pp 615–624. Washington, DC: American Society for Microbiology.

    Google Scholar 

  33. Perego M, Higgins CF, Pearce SR, Gallagher MP, Hoch JA (1991). The oligopeptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol Microbiol 5: 173–185.

    Google Scholar 

  34. Perry D. Kuramitsu HK (1981). Genetic transformation of Streptococcus mutans. Infect Immun 32: 1295–1297.

    Google Scholar 

  35. Qi HK, Sankaran K, Gan K, Wu HC (1995). Structurefunction relationship of bacterial prolipoprotein diacylglyceryl transferase: Functionally significant conserved regions. J Bacteriol 177: 6820–6824.

    Google Scholar 

  36. Reider JL, Macrina F (1976). Plasmid DNA isolation in Streptococcus mutans: Glycine-enhanced cell lysis. In: Stiles HM, Loesche WJ, O'Brien TC (eds), Proceedings: Microbial aspects of dental caries (a special supplement to Microbial Abstracts, Vol 3), pp 725–736. Washington, DC: Information Retrieval.

    Google Scholar 

  37. Rudner DZ, Ledeaux JR, Ireton K, Grossman AD (1991). The spoOK locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J Bacteriol 173: 1388–1398.

    Google Scholar 

  38. Sato Y, Poy F, Jacobson GR, Kuramitsu H (1989). Characterization and sequence analysis of the scrA gene encoded enzyme IIScr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. J. Bacteriol 171: 263–271.

    Google Scholar 

  39. Sato Y, Yamamoto Y, Suzuki R, Kizaki H, Kuramitsu HK (1991). Construction of scrA::laxZ gene fusions to investigate regulation of the sucrose PTS of 162 Streptococcus mutans. FEMS Microbiol Letts 79: 339–346.

    Google Scholar 

  40. Shiroza T, Kuramitsu H (1988). Sequence analysis of the Streptococcus mutans fructo-syltransferase gene by flanking regions. J Bacteriol 170: 810–816.

    Google Scholar 

  41. Shiroza T, Ueda S, Kuramitsu HK (1987). Sequence analysis of the gtfb gene from Streptococcus mutans. J Bacteriol 169: 4263–4270.

    Google Scholar 

  42. Silhavy TJ, Berman ML, Enquist LW (1984). Experiments with gene fusions. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  43. Sofia HJ, Burland V, Daniels DL, Plunkett G III, Blattner RF (1994). Analysis of the Escherichia coli genome, V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res 22: 2576–2586.

    Google Scholar 

  44. Sun S, Daneo-Moore L, Marri L, Hantman M, Shockman GD (1991). Genetic and physiological studies of variants of Streptococcus mutans GS-5 that produce nonmucoid colonies on sucrose-containing media. In: Dunny GM, Cleary PP, McKay LL (eds), Genetics and molecular biology of streptococci, lactococci, and enterococci, pp 256–260. Washington, DC: ASM Publications.

    Google Scholar 

  45. Sutrina SL, Reddy P, Saier MH Jr, Reizer J (1990). The glucose permease of Bacillus subtilis is a single polypeptide chain that functions to energize the sucrose permease. J Biol Chem 265: 18581–18589.

    Google Scholar 

  46. Tao L, Le Blanc DJ, Ferretti J (1992). Novel streptococcal-integration shuttle vectors for gene cloning and inactivation. Gene 120: 105–110.

    Google Scholar 

  47. Ueda S, Shiroza T, Kuramitsu HK (1988). Sequence analysis of the gtfC gene from Streptococcus mutans GS-5. Gene 69: 101–109.

    Google Scholar 

  48. Yamashita Y, Takehara T, Kuramitsu HK (1993). Molecular characterization of a Streptococcus mutans mutant altered in environmental stress responses. J Bacteriol 175: 6220–6228.

    Google Scholar 

  49. Yu J, Hederstedt L, Piggot PJ (1995). The cytochrome bc complex (menaquinone: cytochrome creductase) in Bacillus subtilis has a nontraditional subunit organization. J Bacteriol 177: 6751–6760.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peruzzi, F., Piggot, P.J. & Daneo-Moore, L. Development of an integrative, lacZ transcriptional-fusion plasmid vector for Streptococcus mutans and its use to isolate expressed genes. Methods Cell Sci 20, 153–163 (1998). https://doi.org/10.1023/A:1009826001367

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009826001367

Navigation