Skip to main content
Log in

Solvation and Solvent Relaxation in Swellable Copolymers as Studied by Time-Resolved Fluorescence Spectroscopy

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The fluorescent probe dimethylaminonaphthylsulfonamide is covalently bound to the ends of the pol(ethylene glycol) chains of the swellable block copolymers poly(ethylene glycol)–polystyrene (PEG-PS) and poly(ethylene glycol)–poly(ethylene imine) (PEG-PEI) to investigate the molecular mobility inside the polymers, swollen by different liquids. Steady-state and time-resolved studies of the Stokes shift between absorption and fluorescence spectra reveal that the probe is solvated by both the polymer matrix and the liquid phase. The extent of solvation by the liquid and the mobility of the microenvironment of the probe depend on both the swelling volume of the polymer and the solubility of the probe in this liquid. Steady-state and time-resolved fluorescence depolarisation measurements show that the polymer matrix forms a very rigid solvent cage, which almost completely immobilizes the probe. Upon solvation of the probe by the liquid, the mobility of the probe increases. In PEG-PEI swollen by polar solvents, the mobilities of the probe itself and of its microenvironment, although not reaching the values observed in homogeneous solution, are significantly higher than in PEG-PS, due to the hydrophilic nature of the polymeric backbone in PEG-PEI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Bayer and W. Rapp (1992) in J. M. Harris (Ed.), Biotechnical and Biomedical Applications, Plenum Press, New York.

    Google Scholar 

  2. I. Soutar and L. Swanson (1995) Macromol. Symp. 90, 267-290.

    Google Scholar 

  3. B. Lehr (1998) Ph.D. thesis, University of Tübingen, Tübingen.

    Google Scholar 

  4. B. Lehr, H.-J. Egelhaaf, H. Fritz, W. Rapp, E. Bayer, and D. Oelkrug (1996) Macromolecules 29, 7931-7936.

    Google Scholar 

  5. M. Hof (1998) in W. Rettig, B. Strehmel, and S. Schrader (Eds.), Applied Fluorescence in Chemistry, Biology, and Medicine, Springer-Verlag, Berlin pp. 439-456.

    Google Scholar 

  6. H.-J. Egelhaaf, D. Oelkrug, A. Ellwanger, and K. Albert (1998) J. High Res. Chromatogr. 21, 11.

    Google Scholar 

  7. E. H. W. Pap, M. Ketelaars, J. W. Borst, A. van Hoeck, and A. J. W. G. Visser (1996) Biophys. Chem. 58, 255-266.

    Google Scholar 

  8. P. B. Leezenberg, M. D. Fayer, and C. W. Frank (1996) Pure Appl. Chem. 68, 1381-1388.

    Google Scholar 

  9. E. Kumacheva, Y. Rharbi, M. A. Winnik, L. Guo, K. C. Tam, and R. D. Jenkins (1997) Langmuir 13, 182-186.

    Google Scholar 

  10. B. Lehr, H.-J. Egelhaaf, W. Rapp, E. Bayer, and D. Oelkrug (1998) J. Fluoresc. 8, 171-177.

    Google Scholar 

  11. W. Rapp (1985) Ph.D. thesis, University of Tübingen, Tübingen.

    Google Scholar 

  12. A. Funke and G. Benoit (1954) Bull. Soc. Chim. France Mem. 20, 111.

    Google Scholar 

  13. M. L. Horng, J. A. Gardecki, A. Papazyan, and M. Maroncelli (1995) J. Phys. Chem. 99, 17320.

    Google Scholar 

  14. Y.-H. Li, L.-M. Chan, L. Tyer, R. T. Moody, C. M. Himel, and D. M. Hercules (1975) J. Am. Chem. Soc. 97, 3118-3126.

    Google Scholar 

  15. K. P. Ghiggino, A. G. Lee, S. R. Meech, D. V. O'Connor, and D. Phillips (1981) Biochem. 20, 5381-5389.

    Google Scholar 

  16. S. Uhl (1994) Ph.D. thesis, University of Tübingen, Tübingen.

    Google Scholar 

  17. P. Suppan (1990) J. Photochem. Photobiol. A 50, 293-330.

    Google Scholar 

  18. E. Lippert (1957) Z. Elektrochem. 61, 962.

    Google Scholar 

  19. C. Reichardt (1994) Chem. Rev. 94, 2319-2358.

    Google Scholar 

  20. B. Sauerbrei, V. Jungmann, H. Waldmann (1998) Angew. Chem. Int. Ed. Engl. 37, 1143-1146.

    Google Scholar 

  21. K. S. Lam, M. Lebl, and V. Krchnák (1997) Chem. Rev. 97, 411-448.

    Google Scholar 

  22. W. F. Jager, A. A. Volkers, and D. C. Neckers (1995) Macromolecules 28, 8153-8158.

    Google Scholar 

  23. J. Yguerabide, H. F. Epstein, and L. Stryer (1970) J. Mol. Biol. 51, 573-590.

    Google Scholar 

  24. R. Steiner (1991) in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Principles, Plenum Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egelhaaf, HJ., Lehr, B., Hof, M. et al. Solvation and Solvent Relaxation in Swellable Copolymers as Studied by Time-Resolved Fluorescence Spectroscopy. Journal of Fluorescence 10, 383–392 (2000). https://doi.org/10.1023/A:1009482514437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009482514437

Navigation