Skip to main content
Log in

Role of β-Adrenergic Receptor Subtypes in Lipolysis

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

In vitro lipolysis stimulated by low (-)-isopre-naline concentrations (≤30 nM) in epididymal white adipo-cytes from Sprague-Dawley rats was inhibited at least 60–80% by the specific β1-antagonists LK 204-545 and CGP 20712A (1 μM), suggesting that at these low (10 nM) concentrations of (-)-isoprenaline lipolysis was primarily (80%) but not solely mediated via β1-adrenergic receptors. Low concentrations (100 nM) of (-)-noradrenaline and formoterol also confirmed a role for β1-adrenergic receptors in mediating lipolysis at low concentrations of these agonists. At higher agonist concentrations, β3-adrenergic receptors were fully activated and were the dominant β-adrenergic receptor subtype mediating the maximum lipolytic response, and the maximum response was not affected by the β1-antagonists, demonstrating that the β3-receptor is capable of inducing maximum lipolysis on its own. Studies of lipolysis induced by the relatively β2-selective agonist formoterol in the presence of β1-blockade (1 μM CGP 20712A) demonstrated the inability of the β2-selective antagonist ICI 118-551 to inhibit the residual lipolysis at concentrations of ICI 118-551 ≤ 1 μM. Higher concentrations of ICI 118-551 inhibited the residual formoterol-induced lipolysis competetively, but with low affinity (∼500-fold lower than its β2-adrenergic receptor pA 2, 7.80 ± 0.21), suggesting that formoterol was not acting via β2-adrenergic receptors. These data are consistent with β1-adrenergic receptors playing an important role in lipolysis at physiological but not pharmacological concentrations of catecholamines and that β2-adrenergic receptors play no obvious direct role in mediating β-adrenergic receptor agonist-induced lipolysis in vitro. Finally, racemic-SR 59230A, unlike the pure (S, S)-isomer (a β3-selective antagonist), was found to be a non-selective antagonist at the three β-adrenergic receptor subtypes, showing that the other enantiomers have different selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Emorine LJ, Marullo S, Briend-Sutren M-M, et al. Molecular characterisation of the human β 3-adrenergic receptor. Science 1989;245:1118-1121.

    PubMed  Google Scholar 

  2. Frielle TJ, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK. Cloning of the cDNA for the human β 1-adrenergic receptor. Proc Natl Acad Sci USA 1987;84:7920-7924.

    PubMed  Google Scholar 

  3. Kobilka BK, Dixon RAF, FrielleT, et al. cDNAfor the human β 2-adrenergic receptor: A protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA 1987;84:46-50.

    PubMed  Google Scholar 

  4. Galitzky J, Carpene C, Bousquet Melou A, Berlan M, Lafontan M. Differential activation of β 1-, β 2-and β 3-adrenoceptors by catecholamines in white and brown adipocytes. Fund Clin Pharmacol 1995;24-331.

  5. Germack R, Starzec AB, Vassy R, Perret GY. β-adrenoceptor subtype expression and function in rat adipocytes. Br J Pharmacol 1997;120:201-210.

    PubMed  Google Scholar 

  6. Granneman JG. Effects of agonist exposure on the coupling of beta1-and beta3-adrenergic receptors to adenylyl cyclase in isolated adipocytes. J Pharmacol Exp Therap 1992;261:638-642.

    Google Scholar 

  7. Hollenga C, Zaagsma J. Direct evidence for the atypical nature of functional β-adrenoceptors in rat adipocytes. Br J Pharmacol 1989;98:1420-1424.

    PubMed  Google Scholar 

  8. Murphy GJ, Kirkham DM, Cawthorne MA, Young PY. Correlation of β 3-adrenoceptor-induced activation of cyclic AMP-dependant protein kinase with activation of lipolysis in rat white adipocytes. Biochem Pharmacol 1993;46:575-581.

    PubMed  Google Scholar 

  9. Simard P-M, Atiege C, Maurige P, D'allaire F, Buckowieki LJ. Comparison of the lipolytic effects of norepinephrine and BRL 37344 in rat brown and white adipocytes. Obesity Res 1994;2:424-431.

    Google Scholar 

  10. Van Liefde L, Van Erman A, Van Witzenburg A, Fraeyman N, Vauquelin G. Species and strain-related differences in the expression and functionality of β-adrenoceptor subtypes in adipose tissue. Archs Int Pharmacodyn Theraps 1994;327:69-86.

    Google Scholar 

  11. Van Liefde I, Van Witzenberg A, Vauquelin G. Isoproterenol and selective agonists stimulate similar atypical β-adrenoceptors in rat adipocytes. Biocheml Pharmacol 1993;45:974-977.

    Google Scholar 

  12. Louis SNS, Nero TL, Iakovidis D, Jackman GP, Louis WJ. LK 204-545, a highly selective β 1-adrenoceptor antagonist at human β-adrenoceptors. Eur J Pharmacol 1999;367:431-435.

    PubMed  Google Scholar 

  13. Manara L, Badone D, Baroni M, et al. Aryloxypropanolaminotetralins are the first selective antagonists for atypical (β 3) β-adrenoceptors. Pharmacol Comm 1996;253-258.

  14. Manara L, Badone D, Baroni M, et al. Functional identification of rat atypical adrenoceptors by the first β 3-selective antagonists, aryloxypropanolaminotetralins. Br J Pharmacol 1996;117:435-442.

    PubMed  Google Scholar 

  15. Nisoli E, Tonello C, Landi M, Carruba O. Functional studies of the first selective β 3-adrenergic receptor antagonist SR 56230A in rat brown adipocytes. Mol Pharmacol 1996;49:7-14.

    PubMed  Google Scholar 

  16. Lafontan M, Belan M. Fat cell adrenergic receptors and the control of white and brown fat cell function. J Lipid Res 1993;34:1057-1091.

    PubMed  Google Scholar 

  17. Tung L, Jackman G, Campbell B, Louis S, Iakovidis D, Louis WJ. Partial agonist activity of celiprolol. J Cardiovasc Pharmacol 1993;21:484-488.

    PubMed  Google Scholar 

  18. Van Rossum JM, Hurkmans JATM, Wolters CJJ. Cumulative dose response curves. Arch Int Pharmacodyn Therap 1963;143:299-330.

    Google Scholar 

  19. Wilson C. The rat lipolytic β-adrenoceptor: Studies using novel β-adrenoceptor agonists. Eur J Pharmacol 1984;100:309-319.

    PubMed  Google Scholar 

  20. Garland PB, Randle PJ. Arapid enzymatic assay for glycerol. Nature 1962;196:987.

    PubMed  Google Scholar 

  21. Zaborowsky BR, Mcmahan WC, Griffin WA, Norns FH, Ruffolo RRJ. Computerised graphic methods for determining dissociation constants of agonists, partial agonists, and competitive antagonists in isolated smooth muscle preparations. J Pharmacol Methods 1980;4:165-178.

    PubMed  Google Scholar 

  22. Mackay D. How should values of pA2 and affinity constants for pharmacological competitive antagonists be estimated? J Pharmacy Pharmacol 1978;30:312-313.

    Google Scholar 

  23. Arunlakshana O, Schild HO. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother 1959;14:48-58.

    Google Scholar 

  24. Rang HP. Drug receptors and their function. Nature 1971;231:91-96.

    PubMed  Google Scholar 

  25. Cantello BCC, Smith SA. BRL 35135. Drugs Future 1991;16:797-800.

    Google Scholar 

  26. Cawthorne MA, Sennitt MV, Arch JRS, Smith SA. BRL 35135, a potent and selective atypical β-adrenoceptor agonist. Am J Clin Nutr 1992;55:252S-257S.

    PubMed  Google Scholar 

  27. Arch JRS, Kaumann AJ. Beta3 and atypical beta adrenoceptors. Med Res Revs 1993;13:663-729.

    Google Scholar 

  28. Lafontan M, Bousquet Melou A, Galitzky J, et al. Adrenergic receptors and fat cells: Differential recruitment by physiological amines and homologous regulation. Obesity Resarch 1995;3:507s-513s.

    Google Scholar 

  29. Iakovidis D, Louis SNS, Rezmann LA, et al. Synthesis and β-adrenoceptor agonist properties of (±)-1-(3',4'-dihydroxyphenoxy)-3-(3”,4”-dimethoxyphenyl) ethylamino-2-propanol hydrochloride, (±)-RO363.HCl, and the (2S)-(-)-isomer. Eur J Medl Chem 1999;34:539-548.

    Google Scholar 

  30. Mckean J, Macdonald A. Contributions of β-adrenoceptor subtypes to responses to isoprenaline in rat isolated distal colon. J Pharm Pharmacol 1995;47:388-391.

    PubMed  Google Scholar 

  31. D'Allaire F, Atiegé C, Mauriége P, Simard PM, Bukowieke LJ. Characterisation of β 1-and β 3-adrenoceptors in intact brown adipocytes of the rat. Br J Pharmacol 1995;114:275-282.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louis, S.N., Jackman, G.P., Nero, T.L. et al. Role of β-Adrenergic Receptor Subtypes in Lipolysis. Cardiovasc Drugs Ther 14, 565–577 (2000). https://doi.org/10.1023/A:1007838125152

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007838125152

Navigation