Skip to main content
Log in

In Vivo Evaluation of Hippocampal Anti-Oxidant Ability of Zonisamide in Rats

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We evaluated the anti-oxidant property of zonisamide (ZNS) in the rat brain under freely moving conditions by means of in vivo microdialysis of two exogenous nitroxide radicals, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (carbamoyl-PROXYL) and 3-methoxy carbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCAM). Time-dependent changes in the signal intensities of these exogenous nitroxide radicals obtained from the hippocampal perfusates were observed using an X-band ESR spectrometer at 20-min intervals. The ESR signal intensities of nitroxide radicals decreased exponentially in all animals, which indicates that their half-life could be used as a parameter to estimate the decay rate of nitroxide radicals. Nitroxide radicals lose their paramagnetism when exposed to reductants in a biological system. Thus, half-life reflects the in vivo reducing ability. Although the half-life of carbamoyl-PROXYL, which could not pass the blood-brain barrier (BBB), was not changed when compared with the controls, pre-treatment with ZNS significantly shortened the half-life of PCAM, which could pass through the BBB. These findings suggest that the ZNS-induced increase in reducing ability did not occur within the extracellular space, but rather mainly at the neural cell membrane. This study is the first in vivo evaluation of the reducing ability of ZNS in freely moving animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ito, T., Hori, M., and Kadokawa, T. 1986. Effects of zonisamide (AD-810) on tungstic acid gel-induced thalamic generalized seizures and conjugated estrogen-induced cortical spike-wave discharges in cats. Epilepsia 27:367-374.

    Google Scholar 

  2. Kitani, K. R., Sato, Y., Kanai, S., Nokubo, M., Ohta, M., and Masuda, Y. 1987. Increasing anticonvulsant effects of AD-810 (zonisamide) in aging BDF1 mice. Life Sci. 41:1339-1344.

    Google Scholar 

  3. Sackellares, J. C., Donofrio, P. D., Wagner, J. G., Abou-Khalil, B., Berent, S., and Aasved-Hoyt, K. 1985. Pilot study of zonisamide (1,2-benzisoxazole-3-methansulfonamide) in patients with refractory partial seizures. Epilepsia 26:206-211.

    Google Scholar 

  4. Wilensky, A. J., Friel, P. N., Ojemann, L. M., Dodrill, C. B., McCormick, K. B., and Levy, R. H. 1985. Zonisamide in epilepsy, a pilot study. Epilepsia 26:212-220.

    Google Scholar 

  5. Kito, M., Maehara, M., and Watanabe, K. 1994. Antiepileptic drugs-calcium current interaction in cultured human neuroblastoma cells. Seizure 3:141-149.

    Google Scholar 

  6. Komatsu, M., Okamura, Y., and Hiramatsu, M. 1995. Free radical scavenging activity of zonisamide and its inhibitory effect on lipid peroxide formation in iron-induced epileptogenic foci of rats. Neurosciences 21:23-29.

    Google Scholar 

  7. Mori, A., Noda, Y., and Packer, L. 1998. The anticonvulsant zonisamide scavenges free radicals. Epilepsy Research 30: 153-158.

    Google Scholar 

  8. Okada, M., Kaneko, S., Hirano, T., Mizuno, K., Kondo, T., Otani, K., and Fukushima, Y. 1995. Effects of zonisamide on dopaminergic system. Epilepsy Res. 22:193-205.

    Google Scholar 

  9. Schauf, C. L. 1987. Zonisamide enhances slow sodium inactivation in Myxicola. Brain Res. 413:185-188.

    Google Scholar 

  10. Suzuki, S., Kawakami, K, Nishimura, S., Watanabe, Y., Yagi, K., Seino, M., and Miyamoto, K. 1992. Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res. 12:21-27.

    Google Scholar 

  11. Ueda, Y., Yokoyama, H., Ohya-Nishiguchi, H., and Kamada, H. 1998. ESR spectroscopy for analysis of hippocampal elimination of a nitroxide radical during kainic acid-induced seizure in rats. Magn. Reson. Med. 40:491-493.

    Google Scholar 

  12. Bacic, G., Nilges, M. J., Magin, R. L., Walczak, T., and Swartz, H. M. 1989. In vivo localized ESR spectroscopy reflecting metabolism. Magn. Reson. Med. 10:266-272.

    Google Scholar 

  13. Berliner, J. T. and Wan, X. 1989. In vivo pharmacokinetics by electron spin resonance spectroscopy. Magn. Reson. Med. 9:430-434.

    Google Scholar 

  14. Ishida, S., Kumashiro, H., Tsuchihashi, N., Ogata, T., Ono, M., Kamada, H., and Yoshida, E. 1989. In vivo analysis of nitroxide radicals injected into small animals by L-band ESR technique. Phys. Med. Biol. 34:1317-1323.

    Google Scholar 

  15. Yokoyama, H., Itoh, O., Ogata, T., Obara, H., Ohya-Nishiguchi, H., and Kamada, H. 1997. Temporal brain imaging by a rapid scan ESR-CT system in rats receiving intraperitoneal injection of a methyl ester nitroxide radical. Magn. Reson. Imag. 15:1079-1085.

    Google Scholar 

  16. Yokoyama, H., Lin, Y., Itoh, O., Ueda, Y., Nakajima, A., Ogata, T., Ohya-Nishiguchi, H., and Kamada, H. 1999. ESR imaging for in vivo analysis of free radical eliminating capacity of the hippocampus and cerebral cortex after epileptic seizures in rats. Free Rad. Biol. Med. 27:442-448.

    Google Scholar 

  17. Volodarsky, L. B., Reznikov, V. A., and Ovcharenko, V. I. 1994. Synthetic chemistry of stable nitroxides. Boca Raton: CRC Press.

    Google Scholar 

  18. Nakagawa, K., Ishida, S, Yokoyama, H., Mori, N., Niwa, S., and Tsuchihashi, N. 1994. Rapid free radical reduction in the perfused rat liver. Free Rad. Res. 21:169-176.

    Google Scholar 

  19. Lin, Y., Ogata, T., Watanabe, H., Watanabe, Y., and Akatsuka, T. 1996. ESR speatiotemporal measurement using the rapid field scan L-band ESR-CT system for determination of rate constant of nitroxide radical reduction. Anal. Sci. 13:269-272.

    Google Scholar 

  20. Chapman, D. A., Killian, G. J., Gelerinter, E., and Jarrett, M. T. 1985. Reduction of the spin-label TEMPONE by ubiquinol in the electron transport chain of intact rabbit spermatozoa. Biol. Reprod. 32:884-893.

    Google Scholar 

  21. Pellegrino, L. J., Pellegrino, A. S., and Cushman, A. J. A. 1986. Stereotaxic atlas of the rat brain. New York and London: Plenum Press.

    Google Scholar 

  22. Nakahara, D., Ozaki, N., Miura, Y., Miura, H., and Nagatsu, T. 1989. Increased dopamine and serotonin metabolism in rat nucleus accumbens produced by intracranial self-stimulation of medial forebrain bundle as measured by in vivo microdialysis. Brain Res. 495:178-181.

    Google Scholar 

  23. Ishida, S., Matsumoto, S., Yokoyama, H., Mori, N., Kumashiro, H., Tsuchihashi, N., Ogata, T., Yamada, M., Ono, M., Kitajima, T., Kamada, H., and Yoshida, E. 1992. An ESR-CT imaging of the rat head of living rat receiving an administration of a nitroxide radical. Magn. Reson. Imag. 10:21-27.

    Google Scholar 

  24. Yokoyama, H., Ogata, T., Tsuchihashi, N., Hiramatsu, M., and Mori, N. 1996. A spatiotemporal study on the distribution of intraperitoneally injected nitroxide radical in the rat head using an in vivo ESR imaging system. Magn. Reson. Imag. 14:559-563.

    Google Scholar 

  25. Miura, Y., Anzai, K., and Ozawa, T. 1997. Influence of oxygen stress to redox reaction in the brain, in Magnetic Resonance in Medicine (eds Yoshikawa, T. & Utsumi, H.). Vol. 8, Pages 15-28. Nihon-Igakukan, Tokyo.

    Google Scholar 

  26. Sano, H., Matsumoto, K., and Utsumi, H. 1997. Synthesis and imaging of blood-brain barrier permeable nitroxyl-probes for free radical reaction in brain of living mice.Biochem. Mol. Biol. Int. 42:641-647.

    Google Scholar 

  27. Kato, Y., Shimizu, Y., Lin, Y., Unoura, K., Utsumi, H., and Ogata T. 1995. Reversible Half-wave Potentials of Reduction Processes on Nitroxide Radicals. Electrochem. Acta, 40:2799-2802.

    Google Scholar 

  28. Triggs, W. J. and Willmore, L. J. 1984. In vitro lipid peroxidation in rat brain following intracortical Fe++injection. J. Neurochem. 42:976-980.

    Google Scholar 

  29. Willmore, L. J., Hiramatsu, M., Kochi, H., and Mori, A. 1983. Formation of superoxide radicals, lipid peroxides and edema after FeCl3 injection into rat isocortex. Brain Res. 277:393-396.

    Google Scholar 

  30. Willmore, L. J. and Triggs, W. J. 1991. Iron-induced lipid peroxidation and brain injury responses. Int. J. Devel. Neuroscience 9:175-180.

    Google Scholar 

  31. Trotti, D., Rizzini, B. L., Rossi, D., Haugeto, O., Racagni, G., and Danbolt, N. C. 1997. Neuronal and glial glutamate transporters possess an SH-based redox regulatory mechanism. Eur. J. Neurosci. 9:1236-1243.

    Google Scholar 

  32. Volterra, A., Trotti, D., Floridi, S., and Racagni, G., 1994. Reactive oxygen species inhibit high-affinity glutamate uptake: molecular mechanism and neuropathological implications. Ann. N.Y. Acad. Sci. 17:153-162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokumaru, J., Ueda, Y., Yokoyama, H. et al. In Vivo Evaluation of Hippocampal Anti-Oxidant Ability of Zonisamide in Rats. Neurochem Res 25, 1107–1111 (2000). https://doi.org/10.1023/A:1007622129369

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007622129369

Navigation