Skip to main content
Log in

In Vivo Indomethacin Treatment Causes Microgial Activation in Adult Mice

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The current study was undertaken to study the role of prostaglandins in regulating microglial activation. Mice were treated with indomethacin (2 μg/ml) in their drinking water to selectively inhibit cyclooxygenase activity. After 4–8 days, the effect of inhibiting prostaglandin synthesis on microglial activity was evaluated. This was accomplished by analyzing microglial expression of Mac-1 (C3 complement receptor) as an indicator of activation. Mac-1 expression was assessed by immunohistochemistry of fixed brain cryosections, and by flow cytometric analysis of immunostained single cell suspensions. Both methods demonstrated that compared to age-matched, untreated controls, brains of indomethacin-treated mice had increased levels of Mac-1 expression, suggesting an increase in the state of microglial activation. These results demonstrate the importance of prostaglandins in down regulating microglial activity, and that inhibition of prostaglandin synthesis with indomethacin may act to increase the reactivity of the brain's immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Theele, D. P. and Streit, W. J. 1993. A chronicle of microglial ontogeny. Glia 7:5–8.

    Google Scholar 

  2. Ulvestad, E., Williams, K., Bjerkvig, R., Tiekotter, K., Antel, J., and Matre, R. 1994. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J. Leukoc. Biol. 56:732–740.

    Google Scholar 

  3. Sheng, J. G., Ito, K., Skinner, R. D., Mrak, R. E., Rovnaghi, C. R., Van Eldik, L. J., and Griffin, S. T. 1996. In vivo and in vitro evidence supporting a role for the inflammatory cytokine interleukin-1 as a driving force in Alzheimer pathogenesis. Neurobiol. Aging 17:761–766.

    Google Scholar 

  4. Hull, M., Fiebich, B. L., Lieb, K., Strauss, S., Berger, M., Volk, B., and Bauer, J. 1996. Interleukin-6-associated inflammatory processes in Alzheimer's disease: New therapeutic options. Neurobiol. Aging 17:795–800.

    Google Scholar 

  5. Fillit, H., Ding, W., Buee, L., Kalman, J., Altstiel, L., Lawlor, B., and Wolf-Klein, G. 1991. Elevated circulating tumor necrosis factor levels in Alzheimer's disease. Neurosci. Lett. 129:318–320.

    Google Scholar 

  6. Colton, C. A. 1994. Microglial oxyradical production: causes and consequences. Neuropath. & Applied Neurobiol. 20:175–216.

    Google Scholar 

  7. Cotman, C. W., Tenner, A. J., and Cummings, B. J. 1996. ?-amyloid converts an acute phase injury response to chronic injury responses. Neurobiol. Aging 17:723–731.

    Google Scholar 

  8. Kreutzberg, G. W. 1997. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19:312–318.

    Google Scholar 

  9. Patterson, P. H. 1995. Cytokines in Alzheimer's disease and multiple schlerosis. Curr. Opin. Neurobiol. 5:642–646.

    Google Scholar 

  10. Cotter, R. L., Burke, W. J., Thomas, V. S., Potter, J. F., Zheng J., and Gendelman, H. E. 1999. Insights into the neurodegenerative process of Alzheimer's disease; a role for mononuclear phagocyte-associated inflammation and neurotoxicity. J. Leukoc. Biol. 65:416–427.

    Google Scholar 

  11. McGeer, P. L., Kawamata, T., Walker, D. G., Akiyama, H., Tooyama, I., and McGeer, E. G. 1993. Microglia in degenerative neurological disease. Glia 7:84–92.

    Google Scholar 

  12. Griffin, W. S. T., Sheng, J. G., Roberts, G. W., and Mrak, R. E. 1995. Interleukin-1 expression in different plaque types in Alzheimer's disease: significance in plaque evolution. J. Neuropathol Exp. Neurol. 54:276–281.

    Google Scholar 

  13. Bauer, J., Strauss, S., Schreiter-Gasser, U., Ganter, U., Schlegel, P., Witt, I., Volk, B., and Berger, M. 1991. Interleukin-6 and ?2-macroglobulin indicate an acute-phase state in Alzheimer's disease cortices. FEBS Lett. 285:111–114.

    Google Scholar 

  14. Kalaria, R. N., Harshbarger-Kelly, D. L., Cohen, D. L., and Premkumar, D. R. D. 1996. Molecular aspects of inflammatory and immune responses in Alzheimer's disease. Neurobiol. Aging 17: 687–693.

    Google Scholar 

  15. Eikelenboom, P. and Veerhuis, R. 1996. The role of complement and activated microglia in the pathogenesis of Alzheimer's disease. Neurobiol. Aging 17:673–680.

    Google Scholar 

  16. McGeer, P. L. and McGeer, E. G. 1999. Inflammation of the brain in Alzheimer's disease: implications for therapy. J. Leukoc. Biol. 65:409–415.

    Google Scholar 

  17. Griffin, W. S. T., Sheng, J. G., Royston, M. C., Gentleman, S. M., McKenzie, J. E., Graham, M. D., Roberts, G. W., and Mrak, R. E. 1998. Glial-Neuronal interactions in Alzheimer's Disease: The potential role of a 'cytokine cycle' in disease progression. Brain Path. 8:65–72.

    Google Scholar 

  18. Zicari, A., Lipari, M., Di Renzo, L., Salerno, A., and Pontieri, G. M. 1995. Stimulation of macrophages with IFN gamma or TNF alpha shuts off the suppressive effect played by PGE2. Int. J. Immunopharmacol. 17:779–786.

    Google Scholar 

  19. Zhong, W. W., Burke, P. A., Drotar, M. E., Chavali, S. R., and Forse, R. A. 1995. Effects of prostaglandin E2, cholera toxin and 8-bromo-cyclic AMP on lipopolysaccharide-induced gene expression of cytokines in human macrophages. Immunol. 84:446–452.

    Google Scholar 

  20. Young, M. R. I. 1994. Eicosanoids and the immunology of cancer. Cancer and Metastasis Rev. 13:337–348.

    Google Scholar 

  21. McGeer, P. L., Akiyama, H., Itagaki, S., and McGeer, E. G. 1989. Immune system response in Alzheimer's disease. Can. J. Neurol. Sci. 16:516–527.

    Google Scholar 

  22. Graeber, M. B., Streit, W. J., and Kreutzberg, G. W. 1988. Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. J. Neurosci. Res. 21:18–24.

    Google Scholar 

  23. Streit, W. J., Graeber, M. B., and Kreutzberg, G. W. 1988. Functional plasticity of microglia: a review. Glia 1:301–307.

    Google Scholar 

  24. Bannwarth, B., Netter, P., Pourel, J., Royer, R. J., and Gaucher, A. 1989. Clinical pharmacokinetics of nonsteroidal anti-inflammatory drugs in the cerebrospinal fluid. Biomed. & Pharmacother. 43:121–126.

    Google Scholar 

  25. Vane, J. R. 1971. Inhibition of prostaglandin synthesis as a mechanism of action for the aspirin-like drugs. Nature 231:232–235.

    Google Scholar 

  26. Flecknell, P. A. 1996. Laboratory Animal Anesthesia: a practical introduction for research workers and technicians, pp. 144. Academic Press, London.

    Google Scholar 

  27. Ye, S. and Johnson, R. W. 1999. Increased interleukin-6 expression by microglia from brain of aged mice. J. Neuroimmunol. 93: 139–148.

    Google Scholar 

  28. Streit, W. J. 1996. The role of microglia in neurotoxicity, pp. 3-13, in Aschner, M. and Kimelberg, H. K., (eds.), The role of glia in neurotoxicity, CRC Press, New York.

    Google Scholar 

  29. Slepko, N. and Levi, G. 1996. Progressive activation of adult microglial cells in vitro. Glia 16:241–246.

    Google Scholar 

  30. O'Banion, M. K. 1999. Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit. Rev. Neurobiol. 13:45–82.

    Google Scholar 

  31. Iglesias, B. M., Cerase, J., Cearcchini, C., Levi, G., and Aloisi, F. 1997. Analysis of B7-1 and B7-2 costimulatory ligands in cultured mouse microglia: Upregulation by interferon-gamma and lipopolysaccharide and downregulation by interleukin-10, prostaglandin E(2) and cyclic AMP-elevating agents. J. Neuroimmunol 72:83–93.

    Google Scholar 

  32. Schnyder, J., Dewald, B., and Baggiolini, M. 1981. Effects of cyclooxygenase inhibitors and prostaglandin E2 on macrophage activation in vitro. Prostaglandins 22:411–421.

    Google Scholar 

  33. Hutchinson, D. L. and Myers, R. L. 1987. Prostaglandin-mediated suppression of macrophage phagocytosis of Listeria monocytogenes. Cellular Immunol. 110:68–76.

    Google Scholar 

  34. Parnham, M. J., Winkelman, J., Hartung, H. P., and Hadding, U. 1984. Regulation of the oxidative burst of macrophages by lipid mediators. Agents & Actions 14:215–226.

    Google Scholar 

  35. Metzger, Z., Hoffeld, J. T., and Oppenheim, J. J. 1981. Regulation by PGE2 of the production of oxygen intermediates by LPS-activated macrophages. J. Immunol. 127:1109–1113.

    Google Scholar 

  36. Bonta, I. L., Elliott, G. R., Tak, C., and Ben-Efraim, S. 1989. Indomethacin stimulation of macrophage cytostasis against MOPC-315 tumor cells is enhanced by endogenous metabolites of lipoxygenase and counteracted by prostaglandin E2. Agents & Actions 26:167–169.

    Google Scholar 

  37. D'Acquisto, F., Sautebin, L., Iuvone, T., DiRosa, M., and Carnuccio, R. 1998. Prostaglandins prevent inducible nitric oxide synthase protein expression by inhibiting nuclear factor-kappa B activation in J774 macrophages. FEBS Lett. 440:76–80.

    Google Scholar 

  38. Kunkel, S. L., Wiggins, R. C., Chensue, S. W., and Larrick, J. 1986. Regulation of macrophage tumor necrosis factor production by prostaglandin E2. Biochem. Biophys. Res. Comm. 137:404–410.

    Google Scholar 

  39. Kunkel, S. L. and Chensue, S. W. 1985. Arachidonic acid metabolites regulate interleukin-1 production. Biochem. Biophys. Res. Comm. 128:892–897.

    Google Scholar 

  40. Breitner, J. C. S. 1996. Inflammatory processes and antiinflammatory drugs in Alzheimer's disease: a current appraisal. Neurobiol. Aging 17:789–794.

    Google Scholar 

  41. Aisen, P. S. 1997. Inflammation and Alzheimer's disease: mechanisms and therapeutic strategies. Gerontology 43:143–149.

    Google Scholar 

  42. Mackenzie, I. R. and Munoz, D. G. 1998. Nonsteroidal anti-inflammatory drug use and Alzheimer-type pathology in aging. Neurology 50:986–990.

    Google Scholar 

  43. Fiebich, B. L., Hull, M., Lieb, K., Schumman, G., Berger, M., and Bauer, J. 1998. Potential link between interleukin-6 and arachidonic acid metabolism in Alzheimer's disease. J. Neural Transm. Suppl. 54:268–278.

    Google Scholar 

  44. de la Torre, J. C. 1997. Cerebromicrovascular pathology in Alzheimer's Disease compared to normal aging. Gerontology 43: 26–43.

    Google Scholar 

  45. Stanimirovic, D. B., Shapiro, A., Wong, J., Hutchinson, J., and Durkin, J. 1997. The induction of ICAM-1 in human cerebromicrovascular endothelial cells (HCEC) by ischemia-like conditions promotes enhanced neutrophil/HCEC adhesion. J. Neuroimmunol. 76:193–205.

    Google Scholar 

  46. Stanimirovic, D. B., Wong, J., Shapiro, A., and Durkin, J. P. 1997. Increase in surface expression of ICAM-1, VCAM-1 and Eselectin in human cerebromicrovascular endothelial cells subjected to ishemia-like insults. Acta Neurochir. Suppl. (Wien) 70: 12–16.

    Google Scholar 

  47. Caggiano, A. O. and Kraig, R. P. 1998. Prostaglandin E2 and 4-aminopyridine prevent the lipopolysaccharide-induced outwardly rectifying potassium current and interleukin-1 beta production in cultured rat microglia. J. Neurochem. 70:2357–2368.

    Google Scholar 

  48. Caggiano, A. O. and Kraig, R. P. 1999. Prostaglandin E receptor subtypes in cultured rat microglia and their role in reducing lipopolysaccharide-induced interleukin-1 ? ?production. J. Neurochem. 72:565–575.

    Google Scholar 

  49. Aloisi, F., De Simone, R., Columba-Cabezas, S., and Levi, G. 1999. Opposite effects of interferon-gamma and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia; a regulatory loop controlling microglia pro-and antiinflammatory activities. J. Neurosci. Res. 56:571–580.

    Google Scholar 

  50. Thery, C., Dobbertin, A., and Mallat, M. 1994. Downregulation of in vitro neurotoxicity of brain macrophages by prostaglandin E2 and a ?-adrenergic agonist. Glia 11:383–386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prechel, M.M., Ding, C., Washington, R.L. et al. In Vivo Indomethacin Treatment Causes Microgial Activation in Adult Mice. Neurochem Res 25, 357–362 (2000). https://doi.org/10.1023/A:1007588903897

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007588903897

Navigation