Skip to main content
Log in

Uptake and Incorporation of Docosahexaenoic Acid (DHA) into Neuronal Cell Body and Neurite/Nerve Growth Cone Lipids: Evidence of Compartmental DHA Metabolism in Nerve Growth Factor-Differentiated PC12 Cells

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Docosahexaenoic acid (DHA) accumulates in nerve endings of the brain during development. It is released from the membrane during ischemia and electroconvulsive shock. DHA optimizes neurologic development, it is neuroprotective, and rat adrenopheochromocytoma (PC12) cells have decreased PLA2 activity when DHA is present. To characterize DHA metabolism in PC12 cells, media were supplemented with [3H]DHA or [3H]glycerol. Fractions of nerve growth cone particles (NGC) and cell bodies were prepared and the metabolism of the radiolabeled substrates was determined by thin-layer chromatography. [3H]glycerol incorporation into phospholipids indicated de novo lipid synthesis. [3H]DHA uptake was more rapid in the cell bodies than in the NGC. [3H]DHA first esterified in neutral lipids and later in phospholipids (phosphatidylethanolamine). [3H]glycerol primarily labeled phosphatidylcholine. DHA uptake was compartmentalized between the cell body and the NGC. With metabolism similar to that seen in vivo, PC12 cells are an appropriate model to study DHA in neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Simopoulos, A. P. 1991. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54:438-463.

    Google Scholar 

  2. Léger C. L., Daveloose, D., Christon, R., and Viret, J. 1990. Evidence for a structurally specific role of essential polyunsaturated fatty acids depending on their peculiar double-bond distribution in biomembranes. Biochem. 29:7269-7275.

    Google Scholar 

  3. Aveldañ o M. I., and Bazan N. G. 1973. Fatty acids composition and level of diacylglycerols and phosphoglycerides in brain and retina. Biochem. Biophys. Acta. 296:1-9

    Google Scholar 

  4. Martin, R. E., Rodriguez de Turco, E. B., and Bazan N. G. 1994. Developmental maturation of hepatic n-3 polyunsaturated fatty acid metabolism: Supply of docosahexaenoic acid to retina and brain. J. Nutr. Biochem. 5:151-160.

    Google Scholar 

  5. Cotman. C., Blank, M. L., Moehl, A., and Snyder, F. 1969. Lipid composition of synaptic plasma membrane isolated from rat brain by zonal centrifugation. Biochemistry 8:4606-4612.

    Google Scholar 

  6. Sun, G. Y. and Sun, A. Y. 1972. Phospholipids and acyl groups of synaptosomal and myelin membranes isolated from the cerebral cortex of squirrel monkey (Saimiri sciureus). Biochim. Biophys. Acta. 280:306-315.

    Google Scholar 

  7. Fliesler, S. J., Anderson, R. E. 1983. Chemistry and metabolism of lipids in the vertebrate retina. Prog. Lipid. Res. 22:79-131.

    Google Scholar 

  8. Martin R. M. and Bazan N. G. 1992. Changing fatty acid content of growth cone lipids prior to synaptogenesis. J. Neurochem. 59:318-325.

    Google Scholar 

  9. Neuringer, M. and Conner, W. E. 1986. N-3 fatty acids in the brain and retina: Evidence for their essentialty. Nutrition Rev. 44:285-294.

    Google Scholar 

  10. Bourre, J.-M. E., Dumont, O. S., Picotti, M. J., Pascal, G. A., and Durand, G. A. 1992. Dietary γ-linolenic acid deficiency in adult rats for 7 months does not alter brain docosahexaenoic acid content, in contrast to liver heart and testes. Biochemica et Biophysica Acta. 1124:119-122.

    Google Scholar 

  11. Weigand, R. D., Koutz, C. A., Stinson, A. M., and Anderson, R. E. 1991. Conservation of docosahexaenoic acid in rod outer segments of rat retina during n-3 and n-6 fatty acid deficiency. J. Neurochem. 57:1690-1699.

    Google Scholar 

  12. Bazan, N. G., Rodriguez de Turco, E. B., and Gordon, W. C. 1993. Pathways for conservation and uptake of docosahexaenoic acid in photoreceptors and synapses: Biochemical and autoradiographic studies. Can. J. Physiol. Pharmacol. 71:690-706.

    Google Scholar 

  13. Rodriguez de Turco E. B., Parkins N., Ershov A. V., and Bazan N. G. 1999. Selective retinal pigment epithelial cell lipid metabolism and remodeling conserves photoreceptor docosahexaenoic acid following phagocytosis. J Neurosci Res 57: 479-486.

    Google Scholar 

  14. Fujimoto, K., Kanno, T., Koga, K., Ondera, H., Himo, M., Nishikawa, M., and Maruyama, K. 1993. Effects of n-3 fatty acid deficiency during pregnancy and lactation on learning ability in rats. Pages 257-260, in Yasugi, T., Nakamura, H., and Soma, M. (eds.) Advances in Polyunsaturated Fatty Acid Research. Elsevier. New York.

    Google Scholar 

  15. Lucas, A., Morley, R., Cole, T. J., Lister, G., and Leeson-Payne, C. 1992. Breast milk and subsequent intelligence quotient in children born preterm. Lancet 339:261-264.

    Google Scholar 

  16. Bazan, N. G. 1990. Supply of n-3 polyunsaturated fatty acids and their significance in the central nervous system, Pages 1-24, in Wurtman, R. J. and Wurtman, J. J. (eds.) Nutrition and the Brain, Vol. 8, Raven Press, New York.

    Google Scholar 

  17. Innis S. M. 1991. Essential fatty acids in growth and development. Prog. Lipid Res. 30:39-103.

    Google Scholar 

  18. Neuringer M. 1993. Cerebral cortex docosahexaenoic acid is lower in formula-fed than in breast-fed infants. Nutrition Reviews 51:238-241.

    Google Scholar 

  19. Agostoni, C., Riva, E., Trojan, S., BellÙ , R., and Giovannini, M. 1995. Docosahexaenoic acid status and developmental quotient of healthy term infants. Lancet 346:638.

    Google Scholar 

  20. Agostoni, C., Trojan, S., BellÙ , R., Riva, E., and Giovannini, M. 1995. Neurodevelopmental quotient of healthy term infants at 4 months and feeding practice: The role of long chain polyunsaturated fatty acids. Pediatric Res. 38:262-266.

    Google Scholar 

  21. Uauy, R., Birch, E., Birch, D., and Peirano, P. 1992. Visual and brain function measurements in studies of n-3 fatty acid requirements of infants. J. Pediatr. 120:s168-s180.

    Google Scholar 

  22. Hoffman, D. R., Birch, E. E., Birch, D. G., and Uauy, R. D. 1993. Effects of supplementation with 3 long-chain polyunsaturated fatty acids on retinal and cortical development in premature infants. Am. J. Clin. Nutr. 57:807S-812S.

    Google Scholar 

  23. Carlson, S. E., Werkman, S. H., Rhodes, P. G., and Tolley, E. A. 1993. Visual acuity development in healthy preterm infants: effect of marine-oil supplementation. Amer. J. Clin. Nutr. 58:35-42.

    Google Scholar 

  24. Stevens, L. J., Zentall, S. S., Deck, J. L., Abate, M. L., Watkins, B. A., Lipp, S. R. and Burgess, J. R. 1995. Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. Am. J. Clin. Nutr. 62:761-768.

    Google Scholar 

  25. Benolken, R. M., Anderson, R. E., and Wheeler, T. G. 1973. Membrane fatty acids associated with electrical response in visual excitation. Science 182:1253-1254.

    Google Scholar 

  26. Wheeler T. G., Benolken R. M., and Anderson R. E. 1975. Visual membranes: Specificity of fatty acid precursors for the electrical response to illumination. Science 188:1312-1314.

    Google Scholar 

  27. Anderson, R. E., Benolken, R. M., Jackson, M. B., and Maude, M. B. 1977. The relationship between membrane fatty acids and development of the rat retina, pp. 547-559, in Bazan, N. G., Brenner, R. R., Guisto, N. M. (eds.), Function and Biosynthesis of Lipids, Plenum Press, New York.

    Google Scholar 

  28. Neuringer, M., Connor, W. E., Daigle, D., and Barnstad, L. 1988. Electroretinogram abnormalities in young infant rhesus monkeys deprived of omega-3 fatty acids during gestation and postnatal development or only postnatally. Suppl Invest Ophthalmol Vis Sci 29:145.

    Google Scholar 

  29. Bush, R. A., MalnoË , A., Remé, C. E., and Williams, T. P. 1994. Dietary deficiency of n-3 fatty acids alters rhodopsin content and function in the rtat retina. Invest. Ophthalmol. Vis. Sci. 35:91-100.

    Google Scholar 

  30. Gordon, W. C., Rodriguez de Turco, E. B., and Bazan, N. G. 1992. Retinal pigment epithelial cells play a central role in the conservation of docosahexaenoic acid by photoreceptor cells after shedding and phagocytosis. Current Eye Res. 11:73-83.

    Google Scholar 

  31. Bazan N. G. 1970. Effects of ischemia and electroconvulsive shock of free fatty acid pools in the brain. Biochem. Biophys. Acta 218:1-10.

    Google Scholar 

  32. Martin, R. E. 1998. Docosahexaenoic acid decreases phospholipase A2 activity in the neurites/nerve growth cones of PC12 cells. J. Neurosci. Res. 54:805-813.

    Google Scholar 

  33. Greene, L. A., Aletta, J. M., Rukenstein, A., and Green, S. H. 1987. PC12 pheochromocytoma cells: Culture, nerve growth factor treatment, and experimental exploitation. Meth. Enzymol. 147:207-216.

    Google Scholar 

  34. Sobue, K., and Kanda, K. 1989. α-Actinins, calspectin (brain spectrin or fondrin), and actin participate in adhesion and movement in growth cones. Neuron 3:311-319.

    Google Scholar 

  35. Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.

    Google Scholar 

  36. Folch, J., Lees, M., and Sloan-Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509.

    Google Scholar 

  37. Rouser, G., Fleischer, S., and Yamamoto, A. 1970. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5:494-496.

    Google Scholar 

  38. Marcheselli, V. L., Scott, B. L., Reddy, T. S., and Bazan, N. G. 1988. Quantitative analysis of acyl group composition of brain phospholipids, neutral lipids, and free fatty acids, Pages 83-110, in Boulton A. A., Baker G. B., and Horrocks L. A., (eds.), Lipids and Related Compounds, Neuromethods Vol. 7, Humana Press, New Jersey.

    Google Scholar 

  39. Morrison, W. R. and Smith, L. R. 1964. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 24:1268-1275.

    Google Scholar 

  40. Pfenninger, K. H., Ellis, L., Johnson, M. P., Friedman, L. B., and Somlo, S. 1983. Nerve growth cones isolated from fetal retina brain: Subcellular fractionation and characterization. Cell 35:573-584.

    Google Scholar 

  41. Pfenninger, K. H., and Johnson, M. P. 1983. Membrane biogenesis in the sprouting neuron. I. Selective transfer of newly synthesized phospholipid into the growing neurite. J. Cell Biol. 97:1038-1042.

    Google Scholar 

  42. Posse de Chaves, E., Vance, D. E., Campenot, R. B., and Vance, J. E. 1995. Axonal synthesis of phosphatidylcholine is required for normal axonal growth in rat sympathetic neurons. J. Cell Biol. 128:913-918.

    Google Scholar 

  43. Moore, S. A. 1994. Local synthesis and targeting of essential fatty acids at the cellular interface between blood and brain: A role for cerebral endothelium and astrocytes in the accretion of CNS docosahexaenoic acid. Pages 128-133, in Gall, C., Simopoulos, A. P., Tremoli, E. (eds.) World Review of Nutrition and Diet; Fatty Acids and Lipids: Biological Aspects. Karger, Basel.

    Google Scholar 

  44. Cook, H. W., Clarke, J. T. R. and Spence, M. W. 1983. Concerted stimulation and inhibition of desaturation, chain elongation and esterification of essential fatty acids by cultured neuroblastoma cells. J. Biol. Chem. 258:7586-7591.

    Google Scholar 

  45. Cook, H. W. and Spence, M. W. 1985. Triacylglycerol as a precursor in phospholipid biosynthesis in cultured neuroblastoma cells: studies with labeled glucose, fatty acid, and triacylglycerol. Can. J. Biochem. Cell Biol. 63:919-926.

    Google Scholar 

  46. Williams, T. P. and McGee, R. Jr. 1982. The effects of membrane fatty acid modifications of clonal pheochromocytoma cells on depolarization-dependent exocytosis. J. Biol. Chem. 237:3491-3500.

    Google Scholar 

  47. Bourre, J. M., Faivre, A., Dumont, O., Nouvelot, A., Loudes, C., Puymirat, J., and Tixler-Vidal, A. 1983. Effect of polyunsaturated fatty acid on fetal mouse brain cells in culture in a chemically defined medium. J. Neurochem. 41:1234-1242.

    Google Scholar 

  48. Petroni, A., Blasevich, M., Papini, N., La Spada, P., and Galli, C. 1996. Changes in arachidonic acid levels and formation and in lipid synthesis in the human neuroblastoma SK-N-BE during retinoic acid-induced differentiation. J. Neurochem. 67:549-556.

    Google Scholar 

  49. Chen, H. and Anderson, R. E. 1993. Metabolism in frog retinal pigment epithelium of docosahexaenoic acid and arachidonic acids derived from rod outer segment membranes. Exp. Eye Res. 57:369-377.

    Google Scholar 

  50. Rodriguez de Turco, E. B., Deretic, D., Bazan, N. G. and Papermaster, D. S. 1997. Post-golgi vesicles cotransport of docosahexaenoyl-phospholipids and rhodopsin during frog photoreceptor membrane biogenesis. J. Biol. Chem. 272:10491-10497.

    Google Scholar 

  51. Rotstein N. P., Aveldañ o M. I., Barrantes F. J., Politi L. E. 1996. Docosahexaenoic acid is required for the survival of rat retinal photoreceptors in vitro. J. Neurochem. 66: 1851-1859.

    Google Scholar 

  52. Rodriguez de Turco, E. B., Gordon, W. C., and Bazan, N. G. 1991. Rapid and selective uptake, metabolism, and differential distribution of docosahexaenoic acid among rod and cone photoreceptor cells in the frog retina. J. Neurosci. 11:3667-3678.

    Google Scholar 

  53. Rodriguez de Turco, E. B., Gordon, W. C., Bazan, N. G. 1994. Docosahexaenoic acid is taken up by the inner segment of frog photoreceptors leading to an active synthesis of docosahexaenoyl-inositol lipids: Similarities in metabolism in vivo and in vitro. Curr. Eye Res. 13:21-28.

    Google Scholar 

  54. Zerouga M., Stillwell W., Stone J., Powner A., Jenski L. J. 1996. Phospholipid class as a determinant in docosahexaenoic acid' effect on tumor cell viability. Anticancer Res. 16:2863-2868.

    Google Scholar 

  55. Sun, G. Y., Su, K. L., Der, O. M., and Tang, W. 1978. Enzymatic regulation of arachidonate metabolism in brain membrane phosphoglycerides. Lipids 14:229-235.

    Google Scholar 

  56. Irvine, R. F. 1982. How is the level of free arachidonic acid controlled in mammalian cells? Biochem. J. 204:3-16.

    Google Scholar 

  57. Sun, G. Y. and MacQuarrie, R. A. 1989. Deacylation-reacylation of arachidonyl groups in cerebral phospholipids. Annl. N.Y. Acad. Sci. 559:37-55.

    Google Scholar 

  58. Bazan, N. G., Reddy, T. S., Bazan, H. E. P., Birkle, D. L. 1986. Metabolism of arachidonic and docosahexaenoic acids in the retina. Prog Lipid Res 25:595-606.

    Google Scholar 

  59. Cullis, P. R. and Hope, M. J. 1991. Physical properties and functional roles of lipids in membranes. Pages 1-41, in Vance D. E. and Vance J. E. (eds.) New Comprehensive Biochemistry, Vol. 20. Biochemistry of Lipids, Lipoproteins and Membranes. Elsiver, New York, NY.

    Google Scholar 

  60. Nishizuka, Y. 1992. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607-614.

    Google Scholar 

  61. Berridge, M. J. 1993. Inositol triphosphate and calcium signalling. Nature. 361:315-325.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, R.E., Wickham, J.Q., Om, AS. et al. Uptake and Incorporation of Docosahexaenoic Acid (DHA) into Neuronal Cell Body and Neurite/Nerve Growth Cone Lipids: Evidence of Compartmental DHA Metabolism in Nerve Growth Factor-Differentiated PC12 Cells. Neurochem Res 25, 715–723 (2000). https://doi.org/10.1023/A:1007575406896

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007575406896

Navigation