Skip to main content
Log in

Regulation of Myo-Inositol Homeostasis in Differentiated Human NT2-N Neurons

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We have investigated the possible role of second messengers on inositol homeostasis in NT2-N cells, human central nervous system neurons obtained by terminal differentiation of teratocarcinoma precursors. Uptake of inositol into NT2-N neurons was inhibited ∼10% by protein kinase C (PKC) activation but was unaffected by either the presence of cyclic nucleotide analogs or changes in the intracellular concentration of Ca2+. Efflux of inositol from NT2-N neurons was enhanced in hypotonic buffer but virtually eliminated by inclusion of the Cl channel blocker 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid, a result which indicates the involvement of a volume-sensitive organic osmolyte-anion channel. Volume-sensitive inositol efflux was stimulated ∼30% following activation of PKC or elevation of the cytosolic Ca2+ concentration but was unaffected by protein kinase A activation. These results suggest that whereas inositol uptake into NT2-N neurons is relatively refractory to regulation, volume-sensitive inositol efflux may be significantly affected by intracellular signaling events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Pasantes-Morales, H., Alavez, S., Sánchez-Olea, R., and Morán, J. 1993. Contribution of organic and inorganic osmolytes to volume regulation in rat brain cells in culture. Neurochem. Res. 18: 445-452.

    Google Scholar 

  2. Prockop, L. D. 1971. Hyperglycemia, polyol accumulation, and increased intracranial pressure. Arch. Neurol. 25:126-140.

    Google Scholar 

  3. Lien, Y-H. H., Shapiro, J. I., and Chan, L. 1990. Effects of hypernatremia on organic brain osmoles. J. Clin. Invest. 85:1427-1435.

    Google Scholar 

  4. Lee, J. H., Arcinue, E., and Ross, B. D. 1994. Brief report: organic osmolytes in the brain of an infant with hypernatremia. N. Engl. J. Med. 331:439-442.

    Google Scholar 

  5. Jackson, P. S. and Madsen, J. R. 1997. Identification of the volume-sensitive organic osmolyte/anion channel in human glial cells. Pediatr. Neurosurg. 27:286-291.

    Google Scholar 

  6. Gullans, S. R. and Verbalis, J. G. 1993. Control of brain volume during hyperosmolar and hypoosmolar conditions. Annu. Rev. Med. 44:289-301.

    Google Scholar 

  7. Nonaka, M., Yoshimine, T., Kohmura, E., Wakayama, A., Yamashita, T., and Hayakawa, T. 1998. Changes in brain organic osmolytes in experimental cerebral ischemia. J. Neurol. Sci. 157:25-30.

    Google Scholar 

  8. Jackson, P. S., Morrison, R., and Strange, K. 1994. The volume-sensitive organic osmolyte-anion channel VSOAC is regulated by nonhydrolytic ATP binding. Am. J. Physiol. 267:C1203-C1209.

    Google Scholar 

  9. González, E., Sánchez-Olea, R., and Pasantes-Morales, H. 1995. Inhibition by Cl-channel blockers of the volume-activated, diffusional mechanism of inositol transport in primary astrocytes in culture. Neurochem. Res. 20:895-900.

    Google Scholar 

  10. Strange, K., Morrison, R., Shrode, L., and Putnam, R. 1993. Mechanism and regulation of swelling-activated inositol efflux in brain glial cells. Am. J. Physiol. 265:C244-C256.

    Google Scholar 

  11. Karihaloo, A., Kato, K., Greene, D. A., and Thomas, T. P. 1997. Protein kinase and Ca2+modulation of myo-inositol transport in cultured retinal pigment epithelial cells. Am. J. Physiol. 273: C671-C678.

    Google Scholar 

  12. Reeves, R. E. and Cammarata, P. R. 1996. Osmoregulatory alterations in myo-inositol uptake by bovine lens epithelial cells. Invest. Ophthalmol. Vis. Sci. 37:619-629.

    Google Scholar 

  13. Ruhfus, B. and Kinne, R. K. H. 1996. Hypotonicity-activated efflux of taurine and myo-inositol in rat inner medullary collecting duct cells: evidence for a major common pathway. Kidney Blood Press. Res. 19:317-324.

    Google Scholar 

  14. Ruhfus, B., Tinel, H., and Kinne, R. K. H. 1996. Role of G-proteins in the regulation of organic osmolyte efflux from isolated rat renal inner medullary collecting duct cells. Eur. J. Physiol. 433:35-41.

    Google Scholar 

  15. Preston, A. S., Yamauchi, A., Kwon, H. M., and Handler, J. S. 1995. Activators of protein kinase A and of protein kinase C inhibit MDCK cell myo-inositol and betaine uptake. J. Am. Soc. Nephrol. 6:1559-1564.

    Google Scholar 

  16. Bagnasco, S. M., Montrose, M. H., and Handler, J. S. 1993. Role of calcium in organic osmolyte efflux when MDCK cells are shifted from hypertonic to isotonic medium. Am. J. Physiol. 264:C1165-C1170.

    Google Scholar 

  17. Andrews, P. W. 1984. Retinoic acid induces neuronal differentiation of a cloned human embryonal carcinoma cell line in vitro. Dev. Biol. 103:285-293.

    Google Scholar 

  18. Andrews, P. W., Damjanov, I., Simon, D., Banting, G. S., Carlin, C., Dracopoli, N. C., and FØ gh, J. 1984. Pluripotent embryonal carcinoma clones derived from the human teratocarcinoma cell line Tera-2. Lab. Invest. 50:147-162.

    Google Scholar 

  19. Pleasure, S. J., Page, C., and Lee, V. M.-Y. 1992. Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons. J. Neurosci. 12:1802-1815.

    Google Scholar 

  20. Lee, V. M.-Y. and Andrews, P. W. 1986. Differentiation of NTERA-2 clonal human embryonal carcinoma cells into neurons involves the induction of all three neurofilament proteins. J. Neurosci. 6:514-521.

    Google Scholar 

  21. Hartley, R. S., Margulis, M., Fishman, P. S., Lee, V. M.-Y., and Tang, C.-M. 1999. Functional synapses are formed between human NTera2 (NT2N, hNT) neurons grown on astrocytes. J. Comp. Neurol. 407:1-10.

    Google Scholar 

  22. Novak, J. E., Turner, R. S., Agranoff, B. W., and Fisher, S. K. 1999. Differentiated human NT2-N neurons possess a high intracellular content of myo-inositol. J. Neurochem. 72:1431-1440.

    Google Scholar 

  23. Batty, I. H., Michie, A., Fennel, M., and Downes, C. P. 1993. The characteristics, capacity and receptor regulation of inositol uptake in 1321N1 astrocytoma cells. Biochem. J. 294:49-55.

    Google Scholar 

  24. Rasmussen, H., Isales, C. M., Calle, R., Throckmorton, D., Anderson, M., Gasalla-Herraiz, J., and McCarthy, R. 1995. Diacylglycerol production, Ca2+ influx, and protein kinase C activation in sustained cellular responses. Endocr. Rev. 16:649-681.

    Google Scholar 

  25. Paredes, A., McManus, M., Kwon, H. M., and Strange, K. 1992. Osmoregulation of Na+-inositol cotransporter activity and mRNA levels in brain glial cells. Am. J. Physiol. 263:C1282-C1288.

    Google Scholar 

  26. Wiese, T. J., Dunlap, J. A., Conner, C. E., Grzybowski, J. A., Lowe, W. L., Jr., and Yorek, M. A. 1996. Osmotic regulation of Na-myo-inositol cotransporter mRNA level and activity in endothelial and neural cells. Am. J. Physiol. 270:C990-C997.

    Google Scholar 

  27. Wolfson, M., Hertz, E., Belmaker, R. H., and Hertz, L. 1998. Chronic treatment with lithium and pretreatment with excess inositol reduce inositol pool size in astrocytes by different mechanisms. Brain Res. 787:34-40.

    Google Scholar 

  28. Goldstein, L. and Davis, E. M. 1994. Taurine, betaine, and inositol share a volume-sensitive transporter in skate erythrocyte cell membrane. Am. J. Physiol. 267:R426-R431.

    Google Scholar 

  29. Bender, A. S. and Norenberg, M. D. 1994. Calcium dependence of hypoosmotically induced potassium release in cultured astrocytes. J. Neurosci. 14:4237-4243.

    Google Scholar 

  30. Jackson, P. S. and Strange, K. 1993. Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am. J. Physiol. 265:C1489-C1500.

    Google Scholar 

  31. Liedtke, C. M. 1995. The role of protein kinase C in α-adrenergic regulation of NaCl(K) cotransport in human airway epithelial cells. Am. J. Physiol. 268:L414-L423.

    Google Scholar 

  32. Reeves, R. E., Sanchez-Torres, J., Coca-Prados, M., and Cammarata, P. R. 1998. Expression of pICln mRNA in cultured bovine lens epithelial cells: response to changes in cell volume. Curr. Eye Res. 17:861-869.

    Google Scholar 

  33. Li, C., Breton, S., Morrison, R., Cannon, C. L., Emma, F., Sánchez-Olea, R., Bear, C., and Strange, K. 1998. Recombinant pICln forms highly cation-selective channels when reconstituted into artificial and biological membranes. J. Gen. Physiol. 112:727-736.

    Google Scholar 

  34. Patel, A. J., Lauritzen, I., Lazdunski, M., and Honoré, E. 1998. Disruption of mitochondrial respiration inhibits volume-regulated anion channels and provokes neuronal cell swelling. J. Neurosci. 18:3117-3123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novak, J.E., Agranoff, B.W. & Fisher, S.K. Regulation of Myo-Inositol Homeostasis in Differentiated Human NT2-N Neurons. Neurochem Res 25, 561–566 (2000). https://doi.org/10.1023/A:1007538431486

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007538431486

Navigation