Skip to main content
Log in

Lectin-Mediated Drug Targeting: Selection of Valency, Sugar Type (Gal/Lac), and Spacer Length for Cluster Glycosides as Parameters to Distinguish Ligand Binding to C-Type Asialoglycoprotein Receptors and Galectins

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Common oligosaccharides of cellularglycoconjugates are ligands for more than one type of endogenous lectin.Overlapping specificities to β-galactosides of C-type lectins andgalectins can reduce target selectivity of carbohydrate-ligand-dependentdrug targeting. The purpose of this study is to explore distinct features ofligand presentation and structure for design of cluster glycosides todistinguish between asialoglycoprotein-specific (C-type) lectins andgalectins.

Methods. Extent of binding of labeled sugar receptors totwo types of matrix-immobilized (neo)glycoproteins and to cells wasevaluated in the absence and presence of competitive inhibitors. This panelcomprised synthetic mono-, bi-, and trivalent glycosides with two spacerlengths and galactose or lactose as ligand part.

Results. In contrast to C-type lectins of hepatocytes andmacrophages, bi- and trivalent glycosides do not yield a notable glycosidecluster effect for galectins-1 and -3. Also, theseCa2+-independent galactoside-binding proteins prefer to homein on lactose-bearing glycosides relative to galactose as ligand, whilespacer length requirements were rather similar.

Conclusions. Trivalent cluster glycosides with Gal/GalNAcas ligand markedly distinguish between C-type lectins and galectins.Undesired side reactivities to galectins for C-type lectin drug deliverywill thus be minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. J. Poznansky and R. L. Juliano. Biological approaches to the controlled delivery of drugs: A critical review. Pharmacol. Rev. 36:277–336 (1984).

    Google Scholar 

  2. H.-J. Gabius. Detection and functions of mammalian lectins·with emphasis on membrane lectins. Biochim. Biophys. Acta 1071:1–18 (1991).

    Google Scholar 

  3. D. K. F. Meijer and G. Molema. Targeting of drugs to the liver. Sem. Liver Dis. 15:202–256 (1995).

    Google Scholar 

  4. K. G. Rice. Glycoconjugate-mediated drug targeting. In H.-J. Gabius and S. Gabius (eds.) Glycosciences: Status and Perspectives, Chapman & Hall, London, 1997, pp. 471–483.

    Google Scholar 

  5. R. A. Laine. The information-storing potential of the sugar code. In H.-J. Gabius and S. Gabius (eds.) Glycosciences: Status and Perspectives, Chapman & Hall, London, 1997, pp. 1–14.

    Google Scholar 

  6. G. Reuter and H.-J. Gabius. Eukaryotic glycosylation: Whim of nature or multipurpose tool? Cell. Mol. Life Sci. 55:368–422 (1999).

    Google Scholar 

  7. G. Ashwell and J. Harford. Carbohydrate-specific receptors of the liver. Annu. Rev. Biochem. 51:531–554 (1982).

    Google Scholar 

  8. P. H. Weigel. Galactosyl and N-acetylgalactosaminyl homeostasis: A function for mammalian asialoglycoprotein receptors. BioEssays 16:519–524 (1994).

    Google Scholar 

  9. H.-J. Gabius. Animal lectins. Eur. J. Biochem. 243:543–576 (1997).

    Google Scholar 

  10. R. T. Lee and Y. C. Lee. Enhanced biochemical affinities of multivalent neoglycoconjugates. In Y. C. Lee and R. T. Lee (eds.) Neoglycoconjugates: Preparation and Applications, Academic Press, San Diego, 1994, pp. 23–50.

    Google Scholar 

  11. R. T. Lee and Y. C. Lee. Neoglycoconjugates. In H.-J. Gabius and S. Gabius (eds.) Glycosciences: Status and Perspectives, Chapman & Hall, London, 1997, pp. 55–77.

    Google Scholar 

  12. K. Ozaki, R. T. Lee, Y. C. Lee, and T. Kawasaki. The differences in structural specificity for recognition and binding between asialoglycoprotein receptors of liver and macrophages. Glycoconjugate J. 12:268–274 (1995).

    Google Scholar 

  13. A. Kichler and F. Schuber. Comparative affinity of synthetic multiantennary galactosyl derivatives for the Gal/GalNAc receptor of rat hepatocytes and peritoneal macrophages. J. Drug Target. 6:201–205 (1998).

    Google Scholar 

  14. H. Kaltner and B. Stierstorfer. Animal lectins as cell adhesion molecules. Acta Anat. 161:162–179 (1998).

    Google Scholar 

  15. D. Gupta, H. Kaltner, X. Dong, H.-J. Gabius, and C. F. Brewer. Comparative crosslinking activity of lactose-specific plant and animal lectins and a natural lactose-binding immunoglobulin G fraction from human serum with asialofetuin. Glycobiology 6:843–849 (1996).

    Google Scholar 

  16. A. Kichler and F. Schuber. Versatile synthesis of bi-and tri-antennary galactose ligands: Interaction with the Gal/GalNAc receptor human hepatoma cells. Glycoconjugate J. 12:275–281 (1995).

    Google Scholar 

  17. H.-J. Gabius. Influence of type of linkage and spacer on the interaction of β-galactoside-binding proteins with immobilized affinity ligands. Anal. Biochem. 189:91–94 (1990).

    Google Scholar 

  18. S. André, S. Kojima, N. Yamazaki, C. Fink, H. Kaltner, K. Kayser, and H.-J. Gabius. Galectins-1 and-3 and their ligands in tumor biology. J. Cancer Res. Clin. Oncol. 125:461–474 (1999).

    Google Scholar 

  19. S. André, P. J. C. Ortega, M. A. Perez, R. Roy, and H.-J. Gabius: Lactose-containing starburst dendrimers: Influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties. Glycobiology 9:1253–1261 (1999).

    Google Scholar 

  20. S. Gabius, S. S. Joshi, H.-J. Gabius, and J. G. Sharp. Establishment, characterization and determination of cell surface sugar receptor (lectin) expression by neoglycoenzymes of a human myeloid marker-expressing B-lymphoblastoid cell line. Anticancer Res. 11:793–800 (1991).

    Google Scholar 

  21. J. Frese Jr., C. H. Wu, and G. Y. Wu. Targeting of genes to the liver with glycoprotein carriers. Adv. Drug Deliv. Rev. 14:137–152 (1994).

    Google Scholar 

  22. J. J. Hangeland, J. T. Lewis, Y. C. Lee, and P. O. P. Ts'o. Celltype specific and ligand specific enhancement of cellular uptake of oligodeoxynucleoside methylphosphonates covalently linked with a neoglycopeptide, YEE(ah-GalNAc)3. Bioconjugate Chem. 6:695–701 (1995).

    Google Scholar 

  23. J.-S. Remy, A. Kichler, V. Mordvinov, F. Schuber, and J.-P. Behr. Targeted gene transfer into hepatoma cells with lipopolyaminecondensed DNA particles presenting galactose ligands: A stage towards artificial viruses. Proc. Natl. Acad. Sci. USA 92:1744–1748 (1995).

    Google Scholar 

  24. D. Yi, R. T. Lee, P. Longo, E. T. Boger, Y. C. Lee, W. A. Petri Jr., and R. L. Schnaar. Substructural specificity and polyvalent carbohydrate recognition by the Entamoeba histolytica and rat hepatic N-acetylgalactosamine/galactose lectins. Glycobiology 8:1037–1043 (1998).

    Google Scholar 

  25. R. T. Lee, Y. Ichikawa, H. J. Allen, and Y. C. Lee. Binding characteristics of galactoside-binding lectin (galaptin) from human spleen. J. Biol. Chem. 265:7864–7871 (1990).

    Google Scholar 

  26. R. T. Lee, H.-J. Gabius, and Y. C. Lee. Ligand binding characteristics of the major mistletoe lectin. J. Biol. Chem. 267:23722–23727 (1992).

    Google Scholar 

  27. H.-J. Gabius. The how and why of protein-carbohydrate interaction: a primer to the theoretical concept and a guide to application in drug design. Pharm. Res. 15:23–30 (1998).

    Google Scholar 

  28. R. T. Lee and Y. C. Lee. Preparation of cluster glycosides of N-acetylgalactosamine that have subnanomolar binding constants towards the mammalian hepatic Gal/GalNAc-specific receptor. Glycoconjugate J. 4:317–328 (1987).

    Google Scholar 

  29. R. T. Lee and Y. C. Lee. Facile synthesis of a high-affinity ligand for mammalian hepatic lectin containing terminal N-acetylgalactosamine residues. Bioconjugate Chem. 8:762–765 (1997).

    Google Scholar 

  30. S.-i. Iida, K. Yamamoto, and T. Irimura. Interaction of human macrophage C-type lectin with O-linked N-acetylgalactosamine residues on mucin glycopeptides. J. Biol. Chem. 274:10697–10705 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

André, S., Frisch, B., Kaltner, H. et al. Lectin-Mediated Drug Targeting: Selection of Valency, Sugar Type (Gal/Lac), and Spacer Length for Cluster Glycosides as Parameters to Distinguish Ligand Binding to C-Type Asialoglycoprotein Receptors and Galectins. Pharm Res 17, 985–990 (2000). https://doi.org/10.1023/A:1007535506705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007535506705

Navigation