Skip to main content
Log in

Calcium/Calmodulin Inhibits the Binding of Specific [125I]Omega-Conotoxin GVIA to Chick Brain Membranes

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of Ca2+/calmodulin (CaM) on the specific binding of [125I]omega-conotoxin GVIA (125I-ω-CTX) to crude membranes from chick brain was investigated. When we examined the effects of the activation of various endogenous protein kinases on specific [125I]ω-CTX binding to crude membranes, we observed that Ca2+/CaM had an inhibitory effect regardless of whether or not the standard medium contained ATP (0.5 mM). Ca2+/CaM also had an inhibitory effect in a simple binding-assay medium containing HEPES-HCl buffer, BSA, Ca2+ and CaM, and this effect was dependent on the concentration of Ca2+. The effect of Ca2+/CaM was attenuated by the CaM antagonists W-7 and CaM-kinase II fragment (290–309). An experiment with modified ELISA using purified anti ω-CTX antibody indicated that Ca2+/CaM did not affect the direct binding of [125I]ω-CTX and CaM. These results suggest that Ca2+/CaM either directly or indirectly affects specific [125I]ω-CTX binding sites, probably N-type Ca2+ channels in crude membranes from chick whole brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tsien, R. W., Ellinor, P. T., and Horne, W.A. 1991. Molecular diversity of voltage-dependent Ca2+ channels. Trends. Pharmacol. Sci. 12:349–354.

    Google Scholar 

  2. Miller, R. J. 1992. Voltage-sensitive Ca2+ channels. J. Biol. Chem. 267:1403–1406.

    Google Scholar 

  3. Randall, A. and Tsien, R. W. 1995. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons, J. Neurosci. 15:2995–3012.

    Google Scholar 

  4. Varadi, G., Mori, Y., Mikala, G. and Schwartz, A. 1995. Molecular determinants of Ca2+channel function and drug action. Trends. Pharmacol. Sci. 16:43–49.

    Google Scholar 

  5. Olivera, B. M., Miljanich, G., Ramachandran, J. and Adams, M. E. 1994. Calcium channel diversity and neurotransmitter release: the ?-conotoxines and ?-agatoxins. Ann. Rev. Biochem. 63:823–867.

    Google Scholar 

  6. Westenbroek, R. E., Hell, J. W., Warner, C., Dubel, S. J., Snutch, T. P. and Catterall, W. A. 1992. Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 9:1099–1115.

    Google Scholar 

  7. Olivera, B. M., McIntosh, J. M., Cruz, L. J., Luque, F. A. and Gray, W. R. 1984. Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry 23: 5087–5090.

    Google Scholar 

  8. Kerr, L. M. and Yoshikami, D. 1984. A venom peptide with a novel presynaptic blocking action. Nature 308:282–284.

    Google Scholar 

  9. McCleskey, E. W., Fox, A. P., Feldman, D., and Tsien, R. W. 1986. Different types of calcium channels. J. Exp. Biol. 124: 177–190.

    Google Scholar 

  10. Abe, T., Koyano, K., Saitsu, H., Nishiuchi, Y. and Sakakibara, S. 1986. Binding of ?-conotoxin to receptor sites associated with the voltage-sensitive calcium channel. Neurosci. Lett. 71:203–208.

    Google Scholar 

  11. Cruz, L. J. and Olivera B. M. 1986. Calcium channel antagonists: ?-conotoxin defines a new high affinity site. J. Biol. Chem. 261:6230–6233.

    Google Scholar 

  12. Ichida, S., Wada, T., Sekiguchi, M., Kishino, H., Okazaki, Y. and Akimoto, T. 1993. Characteristics of specific 125I-?-conotoxin GVIA binding in rat whole brain. Neurochem. Res. 18: 1137–1144.

    Google Scholar 

  13. Ichida, S., Wada, T., Akimoto, T., Kasamatsu, Y., Tahara, M. and Hashimoto, K. 1995. Characteristics of specific 125I-?-conotoxin GVIA binding and 125I-?-conotoxin GVIA labeling using bifunctional crosslinkers in crude membranes from chick whole brain. Biochim. Biophys. Acta 1233:57–67.

    Google Scholar 

  14. Hofmann, F., Biel, M. and Flockerzi, V. 1994. Molecular basis for Ca2+ channel diversity. Ann. Rev. Neurosci. 17:399–418.

    Google Scholar 

  15. Herlitze, S., Garcia, D. E., Mackie, K., Hille, B., Scheuer, T. and Catterall, W. A. 1996. Modulation of Ca2+channels by G-protein beta gamma subunits. Nature 380:258–262.

    Google Scholar 

  16. Ikeda, S. R. 1996. Voltage-dependent modulation of N-type calcium channels by G-protein beta gamma subunits. Nature 380: 255–258.

    Google Scholar 

  17. Ichida, S., Wada, T., Tahara, M., Imoto, K. and Zhang, Y. A. 1997. Relationship between specific binding of 125I?-conotoxin GVIA and GTP binding protein: effects of the GTP analogues, mastoparan and AIF- 4. Biochim. Biophys. Acta 1325:215–225.

    Google Scholar 

  18. Means, A. R., Tash, J. S. and Chafouleas, J. G. 1982. Physiological implications of the presence, distribution, and regulation of calmodulin in eukaryotic cells. Physiol. Rev. 62:1–39.

    Google Scholar 

  19. Saimi, Y. and Ling, K.-Y. 1990. Calmodulin activation of calciumdependent sodium channels in excised membrane patches of Paramecium. Science 249:1441–1444.

    Google Scholar 

  20. Smith, J. S., Rousseau, E. and Meissner, G. 1989. Calmodulin modulation of single sarcoplasmic reticulum Ca2+-release channels from cardiac and skeletal muscle. Circ. Res. 64:352–359.

    Google Scholar 

  21. Klaerke, D. A., Petersen, J. and Jorgensen, P. L. 1987. Purification of Ca2+-activated K+ channel protein on calmodulin affinity columns after detergent solubilization of luminal membranes from outer renal medulla. FEBS Lett. 216:211–216.

    Google Scholar 

  22. Ehlers, M. D., Zhang, S., Bernhadt, J. P. and Huganir, R. L. 1996. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84:745–755.

    Google Scholar 

  23. Hsu, Y.-T. and Molday, R. S. 1993. Modulation of the cGMP-gated channel of rod photoreceptor cells by calmodulin. Nature 361:76–79.

    Google Scholar 

  24. Lee, A., Wong, S. T., Gallagher, D., Li, B., Storm, D. R., Scheuer, T. and Catterall, W. A. 1999. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399:155–159.

    Google Scholar 

  25. Zühlke, R. D. and Reuter, H. 1998. Ca2+-sensitive inactivation of L-type Ca2+ ?channels depends on multiple cytoplasmic amino acidsequences of the alpha1C subunit. Prot. Natl. Acad. Sci. USA 95:3287–3294.

    Google Scholar 

  26. Peterson, B. Z., DeMaria, C. D. and Yue, D. T. 1999. Calmodulin is the Ca2+ ?sensor for Ca2+-dependent inactivation of L-type calcium channels. 22:549–558.

    Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  28. Ellinor, P. T., Zhang, J.-F., Horne, W. A. and Tsien, R. W. 1994. Structural determinants of the blockade of N-type calcium channels by a peptide neurotoxin. Nature 372:272–275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ichida, S., Abe, J., Yu-an, Z. et al. Calcium/Calmodulin Inhibits the Binding of Specific [125I]Omega-Conotoxin GVIA to Chick Brain Membranes. Neurochem Res 25, 335–340 (2000). https://doi.org/10.1023/A:1007532818918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007532818918

Navigation