Skip to main content
Log in

Retinal Structure and Function in an Animal Model that Replicates the Biochemical Hallmarks of Desmosterolosis

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Desmosterolosis is a rare, autosomal recessive, human disease characterized by multiple congenital anomalies in conjunction with grossly elevated levels of desmosterol and markedly reduced levels of cholesterol in all bodily tissues. Herein, we evaluated retinal sterol composition, histology, and electrophysiological function in an animal model that exhibited the biochemical features of desmosterolosis, produced by treating pregnant rats and their progeny with U18666A, an inhibitor of desmosterol reductase. Treated rats had cataracts, were substantially smaller, and had markedly high levels of desmosterol and profoundly low levels of cholesterol in their retinas and other tissues compared to age-matched controls. However, their retinas were histologically normal and electrophysiologically functional. These results suggest that desmosterol may be able to replace cholesterol in the retina, both structurally and functionally. These findings are discussed in the context of “sterol synergism.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fliesler, S. J., and Keller, R. K. 1997. Isoprenoid metabolism in the vertebrate retina. Int. J. Biochem. Cell Biol. 29:877-894.

    Google Scholar 

  2. Cenedella, R. J. 1996. Cholesterol and cataracts. Survey Ophthalmol. 40:320-337.

    Google Scholar 

  3. Roux, C. 1964. Action teratogéne du triparanol chéz l'animal. Arch. Franc Pediatr. 21:451-464.

    Google Scholar 

  4. Roux, C., and Aubry, M. 1966. Action teratogéne chez le rat d'un inhibiteur de la synthese due cholesterol, AY9944. Compt. Rend. Seances Soc. Biol. Filiales., 160:1353-1357.

    Google Scholar 

  5. Barbu, V., Roux, C., Dupuis, R., Gardette, J., and Maziere, J. C. 1984. Teratogenic effect of AY9944 in rats: importance of the day of administration and maternal plasma cholesterol level. Proc. Soc. Exp. Biol. Med. 176:54-59.

    Google Scholar 

  6. Roux, C., Horvath, C., and Dupuis, R. 1979. Teratogenic action and embryo lethality of AY9944: Prevention by a hypercholesterolemia-provoking diet. Teratology, 19:35-38.

    Google Scholar 

  7. Smith, D. W., Lemmli, L., and Opitz, J. M. 1964. A newly recognized syndrome of multiple congenital anomalies. J. Pediatr. 64:210-217.

    Google Scholar 

  8. Tint, G. S., Batta, A. K., Xu, G., Shefer, S., Honda, A., Irons, M., Elias E. R., and Salen, G. 1997. The Smith-Lemli-Opitz syndrome: a potentially fatal birth defect caused by a block in the last enzymatic step in cholesterol biosynthesis. Pages 117-144, in Bittman, R. (Ed.), Subcellular Biochemistry, Vol. 28, Plenum Press, New York.

    Google Scholar 

  9. Kelley, R. I. 1998. RSH/Smith-Lemli-Opitz syndrome: mutations and metabolic morphogenesis. Am. J. Hum. Genet. 63: 322-326.

    Google Scholar 

  10. Clayton, P., Mills, K., Keeling, J., and FitzPatrick, D. R. 1996. Desmosterolosis: a new inborn error of cholesterol metabolism. Lancet, 348:404.

    Google Scholar 

  11. FitzPatrick, D. R., Keeling, J. W., Evans, M. J., Kan, A. E., Bell, J. E., Porteous, M. E. M., Mills, K., Winter, R. M., and Clayton, P. T. 1998. Clinical phenotype of Desmosterolosis. Am. J. Med. Genet. 75:145-152.

    Google Scholar 

  12. Avigan, J., Steinberg, D., Vroman, H. E., Thompson, M. J., and Mossettig, E. 1960. Studies of cholesterol biosynthesis. I. The identification of desmosterol in serum and tissues of animals and men treated with Mer-29. J. Biol. Chem. 235:3123-3126.

    Google Scholar 

  13. Steinberg, D., and Avigan, J. 1960. Studies on cholesterol biosynthesis. II. The role of desmosterol in the biosynthesis of cholesterol. J. Biol. Chem. 235:3127-3129.

    Google Scholar 

  14. Fumagalli, R., Grossi-Paoletti, E., Paoletti, P., and Paoletti, R. 1966. Lipids in brain tumours. II. Effect of triparanol and 20,25-diazacholesterol on sterol composition in experimental and human brain tumours. J. Neurochem. 13:1005-1010.

    Google Scholar 

  15. Suzuki, K., Zagoren, J. C., Chen, S. M., and Suzuki,K. 1974. Effects of triparanol and 20,25-diazacholesterol in CNS of rat: morphological and biochemical studies. Acta Neuropathol. (Berl.) 29:141-156.

    Google Scholar 

  16. Phillips, W. A., and Avigan, J. 1963. Inhibition of cholesterol biosynthesis in the rat by 3β-(2-diethylamino-ethoxy)androst-5-en-17-one, hydrochloride. Prod. Soc. Exp. Bio. Med. 112: 233-236.

    Google Scholar 

  17. Cenedella, R. J. 1980. Concentration-dependent effects of AY-9944 and U18666A on sterol synthesis in brain. Biochem. Pharmacol. 29:2751-2754.

    Google Scholar 

  18. Sexton, R. C., Panini, S. R., Azran, F., and Rudney, H. 1983. Effects of 3β-[2-(diethylamino) ethoxy]androst-5-en-17-one on the synthesis of cholesterol and ubiquinone in rat intestinal epithelial cell cultures. Biochemistry, 22:5687-5692.

    Google Scholar 

  19. Duriatti, A., Bouvier-Nave, P., Benveniste, P., Schuber, F., Delprino, L., Balliano, G., and Cattel, L. 1985. In vitro inhibition of animal and higher plants 2,3-oxidosqualene-sterol cyclases by 2-aza-2,3-dihydrosqualene and derivatives, and by other ammonium-containing molecules. Biochem. Pharmacol. 34: 2765-2777.

    Google Scholar 

  20. Cenedella, R. J., and Bierkamper, G. G. 1979. Mechanism of cataract production by 3-β(2-diethylaminoethoxy)androst-5-en-17-one hydrochloride, U18666A: An inhibitor of cholesterol biosynthesis. Exp. Eye Res. 28:673-688.

    Google Scholar 

  21. Cenedella, R. J. 1982. Source of cholesterol for the ocular lens, studied with U18666A: A cataract-producing inhibitor of lipid metabolism. Exp. Eye Res. 37:33-43.

    Google Scholar 

  22. Bierkamper, G. G., and Cenedella, R. J. 1978. Induction of chronic epileptiform activity in the rat by an inhibitor of cholesterol biosynthesis, U18666A. Brain Res. 150:343-351.

    Google Scholar 

  23. von Sallmann, L. 1963. Triparanol-induced cataracts in rats. Trans. Amer. Ophthalmol. Soc. 61:49-60.

    Google Scholar 

  24. Kirby, T. J. 1967. Cataracts produced by triparanol. (MER-29). Trans. Am. Ophthalmol. Soc. 65:494-543.

    Google Scholar 

  25. Harris, J. E. and Graber, L. 1969. The reversal of triparanol-induced cataracts in the rat. Doc. Ophthalmol. 26:324-333.

    Google Scholar 

  26. Fliesler, S. J., Richards, M. J., Miller, C.-Y., and Cenedella, R. J. 2000. Cholesterol synthesis in the vertebrate retina: Effects of U18666A on rat retinal structure, photoreceptor membrane assembly, and sterol metabolism and composition. Lipids 35:289-296.

    Google Scholar 

  27. Fliesler, S. J., Florman, R., and Keller, R. K. 1995. Isoprenoid lipid metabolism in the retina: Dynamics of squalene and cholesterol incorporation and turnover in frog rod outer segment membranes. Exp. Eye Res. 60:57-69.

    Google Scholar 

  28. Fliesler, S. J., Richards, M. J., Miller, C.-Y., and Peachey, N. S. 1999. Marked alteration of sterol metabolism and composition without compromising retinal development or function. Invest. Ophthalmol. Vis. Sci. 40:1792-1801.

    Google Scholar 

  29. Carson, F. 1990. Histotechnology-A Self Instruction Text. Chicago, IL: American Society for Clinical Pathologists Press.

    Google Scholar 

  30. Goto, Y., Peachey, N. S., Ziroli, N. E., Seiple, W. H., Gryczan, C., Pepperberg, D. R., and Naash, M. I. 1996. Rod phototransduction in transgenic mice expressing a mutant opsin gene. J. Opt. Soc. Amer. A. 13:577-585.

    Google Scholar 

  31. Fliesler, S. J., and Keller, R. K. 1995. Metabolism of [3H]farnesol to cholesterol and cholesterogenic intermediates in the living rat eye. Biochem. Biophys. Res. Commun. 210:695-702.

    Google Scholar 

  32. Dvornik, D., Kraml, M., Dubuc, J., Givner, M., and Gaudry, R. 1963. A novel mode of inhibition of cholesterol biosynthesis. J. Am. Chem. Soc. 85:3309.

    Google Scholar 

  33. Givner, M. L., and Dvornik, D. 1965. Agents affecting lipid metabolism-XV. Biochemical studies with the cholesterol biosynthesis inhibitor AY-9944 in young and mature rats. Biochem. Pharmacol. 14:611-619.

    Google Scholar 

  34. Irons, M., Elias, E. R., Salen, G., Tint, G. S., and Batta, A. K. 1993. Defective cholesterol metabolism in Smith-Lemli-Opitz syndrome. Lancet, 341:1414.

    Google Scholar 

  35. Tint, G. S., Salen, G., Batta, A. K., Shefer, S., Irons, M., Ampola, M., and Frieden, R. 1993. Abnormal cholesterol and bile acid biosynthesis in an infant with a defect in 7-dehdrocholesterol (7-DHC)-Δ7 reductase. Gastroenterology (Abstract), 104:A1008.

    Google Scholar 

  36. Tint, G. S., Irons, M., Elias, E. R., Batta, A. K., Frieden, R., Chen, T. S., and Salen, G. 1994. Defective cholesterol biosynthesis associated with the Smith-Lemli-Opitz syndrome. N. Eng. J. Med. 330:107-113.

    Google Scholar 

  37. Chen, J.-F., Elsner, A. E., Burns, S. A., Hansen, R. M., Lou, P. L., Kwong, K. K., and Fulton, A. B. 1992. The effect of eye shape on retinal responses. Clin. Vis. Sci. 6:521-530.

    Google Scholar 

  38. Pallin, O. 1969. Influence of axial length of the eye on the size of the recorded b-potential in the clinical single-flash electroretinogram. Acta Ophthal. (Suppl.) 47:1-57.

    Google Scholar 

  39. Dahl, J. S., Dahl, C. E., and Bloch, K. 1980. Sterols in membranes: Growth characteristics and membrane properties of Mycoplasma capricolum cultured on cholesterol and lanosterol. Biochemistry 19:1467-1472.

    Google Scholar 

  40. Dahl, J. S., Dahl, C. E., and Block, K. 1981. Effect of cholesterol on macromolecular synthesis and fatty acid uptake by Mycoplasma capricolum. J. Biol. Chem. 256:87-91.

    Google Scholar 

  41. Ramgopal, M., and Block, K. 1983. Sterol synergism in yeast. Proc. Natl. Acad. Sci. USA, 80:712-715.

    Google Scholar 

  42. Parks, L. W., and Casey, Wm. 1995. Physiological implications of sterol biosynthesis in yeast. Ann. Rev. Microbiol. 49:95-116.

    Google Scholar 

  43. Whitaker, B. D., and Nelson, D. L. 1988. Sterol synergism in Paramecium tetraurelia. J. Gen. Microbiol. 134:1441-1447.

    Google Scholar 

  44. Rujanavech, C., and Silbert, D. F. 1986. LM cell growth and membrane lipid adaptation to sterol structure. J. Biol. Chem. 261:7196-7203.

    Google Scholar 

  45. Baldassare, J. J., Saito, Y., and Silbert, D. F. 1979. Effect of sterol depletion on LM cell sterol mutants. Changes in the lipid composition of the plasma membrane and their effects on 3-Omethyl glucose transport. J. Biol. Chem. 254:1108-1113.

    Google Scholar 

  46. Yeagle, P. L. 1990. Role of cholesterol in cellular functions. Pages 111-132, in Esfahani, M., and Swaney, J. B. (eds.), Advances in Cholesterol Research, The Telford Press, New Jersey.

    Google Scholar 

  47. Bastiaanse, E. M., Hold, K. M., and Van der Laarse, A. 1997. The effects of membrane cholesterol on ion transport in plasma membranes. Cardiovasc. Res. 33:272-283.

    Google Scholar 

  48. LeGrimellec, C., Friedlander, G., el Yandouzi, E. H., Zlatkine, P., and Giocondi, M. C. 1992. Membrane fluidity and transport properties in epithelia. Kidney Intl. 42:825-836.

    Google Scholar 

  49. Lenaz, G. 1987. Lipid fluidity and membrane protein dynamics. Bio. Sci. Rep. 7:823-837.

    Google Scholar 

  50. Demel, R. A., Bruckdorfer, K. R., and van Deenen, L. L. M. 1972. The effect of sterol structure on the permeability of liposomes to glucose, glycerol, and Rb+. Biochim. Biophys. Acta. 255:321-330.

    Google Scholar 

  51. Vemuri, R., and Philipson, K. D. 1989. Influence of sterols and phospholipids on sarcolemmal and sarcoplasmic reticular cation transporters. J. Biol. Chem. 264:8680-8685.

    Google Scholar 

  52. Nes, W. R., Sekula, B. C., Nes, W. D., and Adler, J. H. 1978. The functional importance of structural features of ergosterol in yeast. J. Biol. Chem. 253:6218-6225.

    Google Scholar 

  53. Fliesler, S. J., and Anderson, R. E. 1983. Chemistry and metabolism of lipids in the vertebrate retina. Progr. Lipid Res. 22: 79-131.

    Google Scholar 

  54. Bloch, K. 1983. Sterol structure and membrane function. Crit. Rev. Biochem. 14:47-92.

    Google Scholar 

  55. Yeagle, P. L. 1988. Cholesterol and the cell membrane, Pages 121-145, in Yeagle, P. L. (ed.), Biology of Cholesterol, CRC Press, Boca Raton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fliesler, S.J., Richards, M.J., Miller, Cy. et al. Retinal Structure and Function in an Animal Model that Replicates the Biochemical Hallmarks of Desmosterolosis. Neurochem Res 25, 685–694 (2000). https://doi.org/10.1023/A:1007519321917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007519321917

Navigation