Skip to main content
Log in

Implications of fish home range size and relocation for marine reserve function

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Reserves are being used increasingly to conserve fish communities and populations under threat from overfishing, but little consideration has been given to how fish behavior might affect reserve function. This review examines the implications of how fish use space, in particular the occurrence and size of home ranges and the frequency and direction of home range relocations. Examples are drawn primarily from the literature on coral reef fishes, but the principles apply to other habitats. Reserves can protect fish species only if individuals restrict their movements to a localized home range during at least part of the life cycle. Home range sizes increase with body size. In small reserves, a significant proportion of fish whose home ranges are centered within the reserve can be exposed to fishing mortality because their home ranges include non-reserve areas. Relocation of home ranges following initial settlement increases exposure to the fishery, especially if habitat selection is frequency-dependent. Distance, barriers, and costs of movement counter such redistribution. These considerations lead to predictions that population density and mean fish size (1) will form gradients across reserve boundaries with maxima in the center of the reserve and minima outside the reserve away from the boundary; (2) will increase rapidly in newly established reserves, only later providing ‘spillover’ to adjacent fisheries as density-dependent emigration begins to take effect; and (3) will be higher in reserves that are larger and have higher area:edge ratios, more habitat types, natural barriers between reserve and non-reserve areas, and higher habitat quality inside than outside the reserve. (4) Species with low mobility and weak density-dependence of space use will show the greatest increase in reserves and the strongest benefit for population reproductive capacity, but those with intermediate levels of these traits will provide the greatest spillover benefit to nearby fisheries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References cited

  • Alcala, A.C. & G.R. Russ. 1990. A direct test of the effects of protective management on abundance and yield of tropical marine resources. J. Cons. Int. Explor. Mer. 46: 40-47.

    Google Scholar 

  • Anderson, D.J. 1982. The home range: a new nonparametric estimation technique. Ecology 63: 103-112.

    Google Scholar 

  • Ballantine, W.J. 1995. Networks of ‘no-take’ marine reserves are practical and necessary. pp. 13-20. In:N.L. Shackell & J.H.M. Willison (ed.) Marine Protected Areas and Sustainable Fisheries, Science and Management of Protected Areas Association, Wolfville.

    Google Scholar 

  • Barrows, E.M. 1996. Animal behavior desk reference, second printing. C.R.C. Press, Boca Raton. 672 pp.

    Google Scholar 

  • Beets, J. & A. Friedlander. 1999. Evaluation of a conservation strategy: a spawning aggregation closure for red hind, Epinephelus guttatus, in the U.S. Virgin Islands. Env. Biol. Fish. 55: 91-98 (this issue).

    Google Scholar 

  • Bohnsack, J.A. & J.S. Ault. 1996. Management strategies to conserve marine biodiversity. Oceanography 9: 73-82.

    Google Scholar 

  • Bohnsack, J.A., D.E. Harper, D.B. McClellan & M. Hulsbeck. 1994. Effects of reef size on colonization and assemblage structure of fishes at artificial reefs off southeastern Florida, U.S.A. Bull. Mar. Sci. 55: 796-823.

    Google Scholar 

  • Brett, J.R. 1965. The relation of size to rate of oxygen consumption and sustained swimming speed of sockeye salmon (Oncorhynchus nerka). J. Fish. Res. Board Can. 22: 1491-1501.

    Google Scholar 

  • Brock, R.E., C. Lewis & R.C. Wass. 1979. Stability and structure of a fish community on a coral patch reef in Hawaii. Mar. Biol. 54: 281-292.

    Google Scholar 

  • Buechner, M. 1987. Conservation in insular parks: simulation models of factors affecting the movement of animals across park boundaries. Biol. Cons. 41: 57-76.

    Google Scholar 

  • Burke, N.C. 1995. Nocturnal foraging habitats of French and bluestriped grunts, Haemulon flavolineatumand H. sciurus, at Tobacco Caye, Belize. Env. Biol. Fish. 42: 265-374.

    Google Scholar 

  • Caley, M.J., M.H. Carr, M.A. Hixon, T.P. Hughes, G.P. Jones & B.A. Menge. 1996. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27: 477-500.

    Google Scholar 

  • Caro, T.M. 1998. Behavioral ecology and conservation biology, Oxford University Press, Oxford. 480 pp.

    Google Scholar 

  • Caro, T.M. & S.M. Durant. 1995. The importance of behavioural ecology for conservation biology: examples from Serengeti carnivores. pp. 451-472. In:A.R.E. Sinclair & P. Arcese (ed.) Serengeti II: Research, Management and Conservation of an Ecosystem, University of Chicago Press, Chicago.

    Google Scholar 

  • Chapman, M.R. 1997. Coral reef fish movements and the effectiveness of the Barbados Marine Reserve. M.Sc. Thesis, McGill University, Montréal. 67 pp.

    Google Scholar 

  • Chapman, M.R. & D.L. Kramer. 1999a. Movement of post-settlement fishes within and among fringing coral reefs in Barbados. Env. Biol. Fish. (in press).

  • Chapman, M.R. & D.L. Kramer. 1999b. Gradients in coral reef fish density and size across the Barbados Marine Reserve boundary: effects of reserve protection and habitat characteristics. Mar. Ecol. Prog. Ser. (in press).

  • Clemmons, J.R. & R. Buchholz (ed.) 1997. Behavioral approaches to conservation in the wild. Cambridge University Press, New York. 400 pp.

    Google Scholar 

  • Colin, P.L., D.Y. Shapiro & D. Weiler. 1987. Aspects of the reproduction of two groupers, Epinephelus guttatusand E. striatusin the West Indies. Bull. Mar. Sci. 40: 220-230.

    Google Scholar 

  • Colton, D.E. & W.S. Alevizon. 1983. Movement patterns of bonefish, Albula vulpes, in Bahamian waters. U.S. Fish. Bull. 81: 148-154.

    Google Scholar 

  • Cook, M.F. & E.P. Bergerson. 1988. Movements, habitat selection, and activity periods of northern pike in Eleven Mile Reservoir, Colorado. Trans. Amer. Fish. Soc. 117: 495-502.

    Google Scholar 

  • DeMartini, E.E. 1993. Modeling the potential of fishery reserves for managing Pacific coral reef fishes. U.S. Fish. Bull. 91: 414-427.

    Google Scholar 

  • Diana, J.S., W.C. Mackay & M. Ehrman. 1977. Movements and habitat preference of northern pike (Esox luciu) in Lac St. Anne, Alberta. Trans. Amer. Fish. Soc. 106: 560-565.

    Google Scholar 

  • Diana, J.S., D.F. Clapp, E.M. Hay-Chmielewski, G. Schnicke, D. Siler, W. Ziegler & R.D. Clark, Jr. 1989. Relative success of telemetry studies in Michigan. Amer. Fish. Soc. Symp. 7: 346-352.

    Google Scholar 

  • Dubin, R.E. & J.D. Baker. 1982. Two types of cover-seeking behaviour at sunset by the princess parrotfish, Scarus taeniopterus, at Barbados, West Indies. Bull. Mar. Sci. 32: 572-583.

    Google Scholar 

  • Dugan, J.E. & G.E. Davis. 1993. Applications of marine refugia to coastal fisheries management. Can. J. Fish. Aquat. Sci. 50: 2029-2042.

    Google Scholar 

  • Fish, P.A. & J. Savitz. 1983. Variations in ranges of largemouth bass, yellow perch, bluegills, and pumpkinseeds in an Illinois Lake. Trans. Amer. Fish. Soc. 112: 147-153.

    Google Scholar 

  • Frederick, J.L. 1997. Post-settlement movement of coral reef fishes and bias in survival estimates. Mar. Ecol. Prog. Ser. 150: 65-74.

    Google Scholar 

  • Fretwell, S.D. 1972. Populations in a seasonal environment. Princeton University Press, Princeton. 217 pp.

    Google Scholar 

  • Fricke, H.W. 1980. Mating systems, maternal and biparental care in triggerfish (Balistidae). Z. Tierpsychol. 53: 105-122.

    Google Scholar 

  • Furlow, F.B. & T. Armijo-Prewitt. 1995. Peripheral populations and range collapse. Cons. Biol. 9: 1345.

    Google Scholar 

  • Gerking, S.D. 1959. The restricted movement of fish populations. Biol. Rev. 34: 221-242.

    Google Scholar 

  • Gibson, R.N. 1993. Intertidal teleosts: life in a fluctuating environment. pp. 513-536. In:T.J. Pitcher (ed.) The Behaviour of Teleost Fishes, Second Edition, Chapman & Hall, London.

    Google Scholar 

  • Grant, J.W.A. 1997. Territoriality. pp. 81-103. In:J.-G.J. Godin (ed.) Behavioural Ecology of Teleost Fishes, Oxford University Press, Oxford.

    Google Scholar 

  • Grant, J.W.A. & D.L. Kramer 1990. Territory size as a predictor of the upper limit to population density of juvenile salmonids in streams. Can. J. Fish. Aquat. Sci. 47: 1724-1737.

    Google Scholar 

  • Hixon, M.A. 1981. An experimental analysis of territoriality in the California reef fish Embiotoca jacksoni(Embiotocidae). Copeia 1981: 653-665.

    Google Scholar 

  • Hixon, M.A. 1987. Territory area as a determinant of mating systems. Amer. Zool. 27: 229-247.

    Google Scholar 

  • Hixon, M.A. 1998. Population dynamics of coral-reef fishes: controversial concepts and hypotheses. Aust. J. Zool. (in press).

  • Hixon, M.A. & J.P. Beets. 1993. Predation, prey refuges, and the structure of coral-reef fish assemblages. Ecol. Monogr. 63: 77-101.

    Google Scholar 

  • Hixon, M.A. & M.H. Carr. 1997. Synergistic predation, density dependence, and population regulation in marine fish. Science 277: 946-949.

    Google Scholar 

  • Hockey, P.A.R. & G.M. Branch. 1994. Conserving marine biodiversity on the African coast: implications of a terrestrial perspective. Aquat. Cons. Mar. Freshw. Ecosyst. 4: 345-362.

    Google Scholar 

  • Hoffmann, S.G. 1983. Sex-related foraging behaviour in sequentially hermaphroditic hogfishes. Ecology 64: 798-808.

    Google Scholar 

  • Holland, K., J.D. Peterson, C.G. Lowe & B.M. Wetherbee. 1993. Movements, distribution and growth rates of the white goatfish Mulloides flavolineatusin a fisheries conservation zone. Bull. Mar. Sci. 52: 982-992.

    Google Scholar 

  • Holland, K., C.G. Lowe & B.M. Wetherbee. 1996. Movements and dispersal patterns of blue trevally (Caranx melampygus) in a fisheries conservation zone. Fish. Res. 25: 279-292.

    Google Scholar 

  • Johannes, R.E. 1981. Words of the lagoon. University of California Press, Berkeley. 245 pp.

    Google Scholar 

  • Jones, G.P. 1991. Postrecruitment processes in the ecology of coral reef fish populations: a multifactorial perspective. pp. 294-328. In:P.F. Sale (ed.) The Ecology of Fishes on Coral Reefs, Academic Press, San Diego.

    Google Scholar 

  • Kramer, D.L., R.W. Rangeley & L.J. Chapman. 1997. Habitat selection: patterns of spatial distribution from behavioural decisions. pp. 37-80. In:J.-G.J. Godin (ed.) Behavioural Ecology of Teleost Fishes, Oxford University Press, Oxford.

    Google Scholar 

  • Lawson, G.L., D.L. Kramer & W. Hunte. 1999. Size-related habitat use and schooling behavior in two species of surgeonfish (Acanthurus Bahianusand A. coeruleus) on a fringing reef in Babados, West Indies. Env. Biol. Fish. 54: 19-33.

    Google Scholar 

  • Leis, J.M. 1991. The pelagic stage of reef fishes: the larval biology of coral reef fishes. pp. 183-230. In:P.F. Sale (ed.) The Ecology of Fishes on Coral Reefs, Academic Press, San Diego.

    Google Scholar 

  • Lesica, P. & F.W. Allendorf. 1995. When are peripheral populations valuable for conservation? Cons. Biol. 9: 753-760.

    Google Scholar 

  • Lewis, A.R. 1997. Recruitment and post-recruitment immigration affect the local population size of coral reef fishes. Coral Reefs 16: 139-149.

    Google Scholar 

  • Linfield, R.S.J. 1985. An alternative concept to home range theory with respect to populations of cyprinids in major river systems. J. Fish Biol. 27(Supp. A): 187-196.

    Google Scholar 

  • Lirman, D. 1994. Ontogenetic shifts in habitat preference in the three-spot damselfish, Stegastes planifrons(Cuvier), in Roatan Island, Honduras. J. Exp. Mar. Biol. Ecol. 180: 71-81.

    Google Scholar 

  • Low, R.M. 1971. Interspecific territoriality in a pomacentrid reef fish, Pomacentrus flavicaudaWhitley. Ecology 52: 649-654.

    Google Scholar 

  • Luckhurst, B.E. & K. Luckhurst. 1978. Diurnal space utilization in coral reef fish communities. Mar. Biol. (Berl.) 49: 325-332.

    Google Scholar 

  • MacCall, A.D. 1990. Dynamic geography of marine fish populations. University of Washington Press, Seattle. 153 pp.

    Google Scholar 

  • Matheney, M.P. IV & C.F. Rabeni. 1995. Patterns of movement and habitat use by northern hog suckers in an Ozark stream. Trans. Amer. Fish. Soc. 124: 886-897.

    Google Scholar 

  • Mathews, S.B. & M.W. Barker. 1983. Movements of rockfish (Sebastes) in Northern Puget Sound, Washington. U.S. Fish. Bull. 82: 916-922.

    Google Scholar 

  • Matthews, K.R. 1990. An experimental study of habitat preferences and movement patterns of copper, quillback, and brown rockfishes (Sebastesspp.). Env. Biol. Fish. 29: 161-178.

    Google Scholar 

  • Matthews, K.R. 1996. Diel movement and habitat use of California golden trout in the Golden Trout Wilderness, California. Trans. Amer. Fish. Soc. 125: 78-86.

    Google Scholar 

  • McAfee, S.T. & S.G. Morgan. 1996. Resource use by five sympatric parrotfishes in the San Blas Archipelago, Panama. Mar. Biol. 125: 427-437.

    Google Scholar 

  • McClanahan, T.R. & N.A. Muthiga. 1988. Changes in Kenyan coral reef community structure and function due to exploitation. Hydrobiologia 166: 269-276.

    Google Scholar 

  • McLaughlin, R.L. & D.L. Kramer. 1991. The association between amount of red muscle and mobility in fishes: a statistical evaluation. Env. Biol. Fish. 30: 369-378.

    Google Scholar 

  • Norman, M.D. & G.P. Jones. 1984. Determinants of territory size in the pomacentrid reef fish, Parma victoriae. Oecologia 61: 60-69.

    Google Scholar 

  • Nursall, J.R. 1977. Territoriality in redlip blennies (Ophioblennicus atlanticus—-Pisces: Blenniidae). J. Zool., Lond. 182: 205-223.

    Google Scholar 

  • Ogden, J.C. & N.S. Buckman. 1973. Movements, foraging groups, and diurnal migrations of the striped parrotfish Scarus croicensisBloch (Scaridae). Ecology 54: 589-596.

    Google Scholar 

  • Ogden, J.C. & P.R. Ehrlich. 1977. The behavior of heterotypic resting schools of juvenile grunts (Pomadasyidae). Mar. Biol. (Berl.) 42: 273-280.

    Google Scholar 

  • Polacheck, T. 1990. Year around closed areas as a management tool. Nat. Res. Model. 4: 327-354.

    Google Scholar 

  • Polunin, N.V.C. 1990. Marine regulated areas: an expanded approach for the tropics. Resource Management and Optimization 7: 283-299.

    Google Scholar 

  • Polunin, N.V.C. & C.M. Roberts. 1996. Reef fisheries. Chapman & Hall, London. 477 pp.

    Google Scholar 

  • Power, M.E. 1984. Habitat quality and the distribution of algae-grazing catfish in a Panamanian stream. J. Anim. Ecol. 53: 357-374.

    Google Scholar 

  • Rakitin, A. & D.L. Kramer. 1996. Effect of a marine reserve on the distribution of coral reef fishes in Barbados. Mar. Ecol. Prog. Ser. 131: 97-113.

    Google Scholar 

  • Ridgway, M.S. & B.W. Shuter. 1996. Effects of displacement on the seasonal movements and home range characteristics of smallmouth bass in Lake Opeongo. N. Amer J. Fish. Manag. 16: 371-377.

    Google Scholar 

  • Roberts, C.M. 1995a. Effects of fishing on ecosystem structure of coral reefs. Cons. Biol. 9: 988-995.

    Google Scholar 

  • Roberts, C.M. 1995b. Rapid build-up of fish biomass in a Caribbean marine reserve. Cons. Biol. 9: 815-826.

    Google Scholar 

  • Roberts, C.M. 1997. Connectivity and management of Caribbean coral reefs. Science 278: 1454-1457.

    Google Scholar 

  • Roberts, C.M. & J.P. Hawkins. 1997. How small can a marine reserve be and still be effective? Coral Reefs 16: 150.

    Google Scholar 

  • Roberts, C.M. & R.F.G. Ormond. 1992. Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Mar. Ecol. Prog. Ser. 41: 1-8.

    Google Scholar 

  • Roberts, C.M. & N.V.C. Polunin. 1991. Are reserves effective in management of reef fisheries? Rev. Fish Biol. Fish. 1: 65-91.

    Google Scholar 

  • Robertson, D.R. 1988. Abundances of surgeonfishes on patch-reefs in Caribbean Panamá: due to settlement, or post-settlement events? Mar. Biol. 97: 495-501.

    Google Scholar 

  • Robertson, D.R. & S.D. Gaines. 1986. Interference competition structures habitat use in a local assemblage of coral reef surgeonfishes. Ecology 67: 1372-1383.

    Google Scholar 

  • Robertson, D.R., N.V.C. Polunin & K. Leighton. 1979. The behavioral ecology of three Indian Ocean surgeonfishes (Acanthurus lineatus, A. leucosternonand Zebrasoma scopas): their feeding strategies, and social and mating systems. Env. Biol. Fish. 4: 125-170.

    Google Scholar 

  • Russ, G.R. 1991. Coral reef fisheries: effects and yields. pp. 183-230. In:P.F. Sale (ed.) The Ecology of Fishes on Coral Reefs, Academic Press, San Diego.

    Google Scholar 

  • Russ, G.R. & A.C. Alcala. 1996. Do marine reserves export adult fish biomass? Evidence from Apo Island, central Philippines. Mar. Ecol. Prog. Ser. 132: 1-9.

    Google Scholar 

  • Russell, B.C., F.H. Talbot & S. Domm. 1974. Patterns of colonisation of artificial reefs by coral reef fishes. Proc. 2nd Int. Coral Reef Symp. 1: 207-215.

    Google Scholar 

  • Sale, P.F. 1971. Extremely limited home range in a coral reef fish, Dascyllus aruanus(Pisces; Pomacentridae). Copeia 1971: 325-327.

    Google Scholar 

  • Sale, P.F. 1978. Reef fishes and other vertebrates: a comparison of social structures. pp. 313-346. In:E.S. Reese & F.J. Lighter (ed.) Contrasts in Behavior, Adaptations in the Aquatic and Terrestrial Environments, John Wiley & Sons, New York.

    Google Scholar 

  • Sale, P.F. 1991. Reef fish communities: open nonequilibrial systems. pp. 564-598. In:P.F. Sale (ed.) The Ecology of Fishes on Coral Reefs, Academic Press, San Diego.

    Google Scholar 

  • Schonewald-Cox, C.M. & J.W. Bayless. 1986. The boundary model: a geographical analysis of design and conservation of natural reserves. Biol. Cons. 38: 305-322.

    Google Scholar 

  • Scudder, G.G.E. 1989. The adaptive significance of marginal populations: a general perspective. pp. 180-185. In:C.D. Levings, L.B. Holtby & M.A. Henderson (ed.) Proceedings of the National Workshop on Effects of Habitat Alteration on Salmonid Stocks, Can. Spec. Publ. Fish. Aquat. Sci. 105.

  • Shackell, N.L. & J.H.M. Willison. 1995. Marine protected areas and sustainable fisheries. Science and Management Protected Areas Association, Wolfville. 300 pp.

    Google Scholar 

  • Shapiro, D.Y., G. Garcia-Moliner & Y. Sadovy. 1994. Social system of an inshore stock of the red hind grouper, Epinephelus guttatus(Pisces: Serranidae). Env. Biol. Fish. 41: 415-422.

    Google Scholar 

  • Shulman, M.J. & J.C. Ogden 1987. What controls tropical reef fish populations: recruitment or benthic mortality? An example in the Caribbean reef fish Haemulon flavolineatum. Mar. Ecol. Prog. Ser. 39: 233-242.

    Google Scholar 

  • Sikkel, P.C. 1990. Social organization and spawning in the Atlantic sharpnose puffer, Canthigaster rostrata(Tetraodontidae). Env. Biol. Fish. 27: 243-254.

    Google Scholar 

  • Simberloff, D. & L.G. Abele. 1982. Refuge design and island biogeographic theory: effects of fragmentation. Amer. Nat. 120: 41-50.

    Google Scholar 

  • Sladek Nowlis, J.S. & C.M. Roberts. 1997. You can have your fish and eat it, too: theoretical approaches to marine reserve design. Proc. 8th Int. Coral Reef Symp. 2: 1907-1910.

    Google Scholar 

  • Sluka, R., M. Chiappone & K.M. Sullivan. 1994. Comparison of juvenile grouper populations in southern Florida and the central Bahamas. Bull. Mar. Sci. 54: 871-880.

    Google Scholar 

  • Tupper, M. & F. Juanes 1999. Effects of a marine reserve on recruitment of grunts (Pisces: Haemulidae) at Barbados, West Indies. Env. Biol. Fish. 55: 53-63 (this issue).

    Google Scholar 

  • Tulevech, S.M. & T.W. Recksiek. 1994. Acoustic tracking of adult white grunt Haemulon plumerieri, in Puerto Rico and Florida. Fish. Res. 19: 301-319.

    Google Scholar 

  • van Rooij, J.M., F.J. Kroon & J.J. Videler. 1996. The social and mating system of the herbivorous reef fish Sparisoma viride: one-male versus multi-male groups. Env. Biol. Fish. 47: 353-378.

    Google Scholar 

  • Vincent, A.C.J. & Y.J. Sadovy. 1998. Reproductive ecology in the conservation and management of fishes. pp. 209-245. In:T.M. Caro (ed.) Behavioral Ecology and Conservation Biology, Oxford University Press, New York.

    Google Scholar 

  • Waldner, R.E. & D.R. Robertson. 1980. Patterns of habitat partitioning by eight species of territorial Caribbean damselfishes (Pisces: Pomacentridae). Bull. Mar. Sci. 30: 171-186.

    Google Scholar 

  • Warner, R.R. & S.G. Hoffmann. 1980. Population density and the economics of territorial defense in a coral reef fish. Ecology 61: 772-780.

    Google Scholar 

  • Wellington, G.M. & B.C. Victor. 1988. Variation in components of reproductive success in an undersaturated population of coral reef damselfish: a field perspective. Amer. Nat. 131: 588-601.

    Google Scholar 

  • Williams, D.M. 1991. Patterns and processes in the distribution of coral reef fishes. pp. 437-474. In:P.F. Sale (ed.) The Ecology of Fishes on Coral Reefs, Academic Press, San Diego.

    Google Scholar 

  • Wittenberger, J.F. 1981. Animal social behavior. Duxbury Press, Boston. 722 pp.

    Google Scholar 

  • Wolff, N., R. Grober-Dunsmore, C.S. Rogers & J. Beets. 1999. Management implications of fish trap effectiveness in adjacent coral reef and gorgonian habitats. Env. Biol. Fish. 55: 81-90 (this issue).

    Google Scholar 

  • Zeller, D.C. 1997. Home range and activity patterns of the coral trout Plectropomus leopardus(Serranidae). Mar. Ecol. Prog. Ser. 154: 65-77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kramer, D.L., Chapman, M.R. Implications of fish home range size and relocation for marine reserve function. Environmental Biology of Fishes 55, 65–79 (1999). https://doi.org/10.1023/A:1007481206399

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007481206399

Navigation