Skip to main content
Log in

Expression and Regulation of Macrophage Inflammatory Protein-2 Gene by Vanadium in Mouse Macrophages

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Environmental and occupational exposure to vanadium (V) dusts results in inflammation mainly confined to the respiratory tract. Macrophages apparently play an important role in mediating the inflammation via the production of many chemokines. In the current study, we investigated whether vanadium can regulate the gene expression of a CXC chemokine macrophage inflammatory protein-2 (MIP-2), and to determine the molecular mechanisms controlling MIP-2 gene expression. A mouse macrophage cell line RAW 264.7 was treated with sodium metavanadate (NaVO3) at the dose of 0.5, 5, or 10 μg/ml V. Northern blot analysis showed that induction of MIP-2 mRNA expression was in a dose-dependent manner. To define the time course of the inflammatory response, RAW 264.7 cells were exposed to 5 μg/ml V, MIP-2 mRNA in macrophages increased markedly as early as 1 h after treatment, maximally induced at 4 h and reduced to 2-fold above control levels by 6 and 8 h. The protein levels of MIP-2 in conditioned media, measured by enzyme-linked immunosorbent assay (ELISA), was well correlated with the levels of MIP-2 mRNA following all of the treatments in the study. In addition, the increase in MIP-2 mRNA expression by vanadium was attenuated by co-treatment with the antioxidant N-acetylcysteine (NAC), at the doses of 10 and 20 mM, suggesting that the induction of MIP-2 mRNA is mediated via the generation of reactive oxygen species (ROS). To further investigate transcriptional regulation of the MIP-2 gene expression by vanadium, we performed RNA decay assay by measuring the half-life of MIP-2 mRNA. Co-treatment of macrophages with the transcriptional inhibitor actinomycin D at 5 μg/ml following exposure to 5 μg/ml V for 4 h revealed complete stabilization of vanadium-induced MIP-2 mRNA and no sign of mRNA degradation, at least, for 6 h, in comparison to the half-life of MIP-2 mRNA was approximately 2.5 h by bacterial lipopolysaccharide (LPS) treatment, supporting post-transcriptional stabilization as the predominant role of MIP-2 gene expression. In conclusion, these observations demonstrate that in vitro vanadium can induce MIP-2 mRNA expression, mediating, at least in part, via the production of ROS. In addition, the increase in MIP-2 mRNA level involves, most likely, post-transcriptional control via increased mRNA stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. NECHAY, B. R. 1984. Mechanisms of action of vanadium. Ann. Rev. Pharmacol. Toxicol. 24:501-524.

    Google Scholar 

  2. GOYER, R. A. 1991. Toxic effects of metals. In Toxicology. M. O. Amdur, J. Doull, and C. D. Klaassen, eds., 4th ed. Pergamon, New York, 623-680.

    Google Scholar 

  3. LEVY, B. S., L. HOFFMAN, and S. GOTTSEGEN. 1984. Boilermakers' bronchitis: Respiratory tract irritation associated with vanadium pentoxide exposure during oil-to-coal conversion of a power plant. J. Occup. Med. 26:567-570.

    Google Scholar 

  4. KIVILUOTO, M. 1980. Observations on the lungs of vanadium workers. Br. J. Ind. Med. 37:363-366.

    Google Scholar 

  5. OPPENHEIM, J. J., C. O. C. ZACHARIAE, N. MUKAIDA, and K. MATSUSHIMA. 1991. Properties of the novel proinflammatory supergene “intercrine” cytokine family. Annu. Rev. Immunol. 9:617-648.

    Google Scholar 

  6. MILLER, M. D., and M. S. KRANGEL. 1992. Biology and biochemistry of the chemokines: A family of chemotactic and inflammatory cytokines. Crit. Rev. Immunol. 12:17-46.

    Google Scholar 

  7. BAGGIOLINI, M., B. DEWALD, and B. MOSER. 1994. Interleukin-8 and related chemotactic cytokines-CXC and CC chemokines. Adv. Immunol. 55:97-179.

    Google Scholar 

  8. AHUFA, S. K., J. L. GAO, and P. M. MURPHY. 1994. Chemokine receptors and molecular mimicry. Immunol. Today 15:281-287.

    Google Scholar 

  9. DAVTELIS, G., P. TEKAMP-OLSON, S. D. WOLPE, K. HERMSEN, C. LUEDKE, C. GALLEGOS, D. COIT, J. MERRY WEATHER, and A. CERAMI. 1988. Cloning and characterization of a cDNA for murine macrophage inflammatory protein (MIP), a novel monokine with inflammatory and chemokinetic properties. J. Exp. Med. 167:1939-1944.

    Google Scholar 

  10. DRISCOLL, K. E., D. G. HASSENBEIN, B. W. HOWARD, R. F. ISFORT, D. CODY, M. H. TINDAL, M. SUCHANEK, and J. M. CARTER. 1995. Cloning, expression, and functional characterization of rat MIP-2: a neutrophil chemoattractant and epithelial cell mitogen. J. Leukoc. Biol. 58:359-364.

    Google Scholar 

  11. TEKAMP-OLSON, P., C. GALLEGOS, D. BAUER, J. MCCLAIN, B. SHERRY, M. FABRE, S. V. DEVENTER, and A. CERAMI. 1990. Cloning and characterization of cDNAs for murine macrophage inflammatory protein 2 and its human homologues. J. Exp. Med. 172:911-919.

    Google Scholar 

  12. WOLPE, S. D., B. SHERRY, D. JUERS, G. DAVATELIS, R. W. YURT, and A. CERAMI. 1989. Identification and characterization of macrophage inflammatory protein 2. Proc. Natl. Acad. Sci. USA 86:612-616.

    Google Scholar 

  13. TSAI, C. S., M. M. SHI, J. J. GODLESKI, and J. D. PAULAUSKIS. 1996. Manganese-induced pulmonary inflammation and increased expression of pro-inflammatory cytokine mRNA in rat lung cells. Am. J. Respir. Critical. Care Med. 153:A614. (Abstr.)

    Google Scholar 

  14. PIERCE, L. M., F. ALESSANDRINI, J. J. GODLESKI, and J. D. PAULAUSKIS. 1996. Vanadium-induced chemokine mRNA expression and pulmonary inflammation. Toxicol. Appl. Pharmacol. 138:1-11.

    Google Scholar 

  15. GRABOWSKI, G. M., J. D. PAULAUSKIS, and J. J. GODLESKI. 1999. Mediating phosphorylation events in the vanadium-induced respiratory burst of alveolar macrophages. Toxicol. Appl. Pharmacol. 156:170-178.

    Google Scholar 

  16. CANTLEY, L. C. JR., and P. AISEN. 1979. The fate of cytoplasmic vanadium. J. Biol. Chem. 254:1781-1784.

    Google Scholar 

  17. MEISTER, A. and M. E. ANDERSON. 1983. Glutathione. Annu. Rev. Biochem. 52:711-760.

    Google Scholar 

  18. SHI, M. M., J. J. GODLESKI, and J. D. PAULAUSKIS. 1996. Regulation of macrophage inflammatory Protein-1α mRNA by oxidative stress. J. Biol. Chem. 271:5878-5883.

    Google Scholar 

  19. METINKO, A. P., S. L. KUNKEL, T. J. STANDIFORD, and R. M. STRIETER. 1992. Anoxia-hyperoxia induces monocyte-derived interleukin-8. J. Clin. Invest. 90:791-798.

    Google Scholar 

  20. RALPH, P. and I. NAKOINZ. 1977. Antibody-dependent killing of erythrocyte and tumor targets by macrophage-related cell lines: enhancement by PPD and LPS. J. Immunol. 119(3):950-954.

    Google Scholar 

  21. RASCHKE, W. C., S. BAIRD, P. RALPH, and I. NAKOINZ. 1978. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 15:261-267.

    Google Scholar 

  22. CHOMCZYNSKI, P., and N. SACCHI. 1987. Single-step method of RNA isolation by and guanidmium-thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156-159.

    Google Scholar 

  23. SHI, M. M., A. KUGELMAN, T. IWAMOTO, L. TIAN, and H. J. FORMAN. 1994. Quinone-induced oxidative stress elevates r-glutamylcysteine synthetase activity in rat lung epithelial L Z cells, J. Biol. Chem. 269:26512-26517.

    Google Scholar 

  24. HUANG, S., J. D. PAULAUSKIS, J. J. GODLESKI, and L. KOBZIK. 1992. Expression of macrophage inflammatory protein-2 and KC mRNA in pulmonary inflammation. Am. J. Pathol. 141:981-988.

    Google Scholar 

  25. FARON, A., S. HUANG, J. D. PAULAUSKIS, and L. KOBZIK. 1995. Airway neutrophilia and chemokine mRNA expression in sulfur dioxide-induced bronchitis. Am. J. Respir. Cell Mol. Biol. 12:345-350.

    Google Scholar 

  26. DRISCOLL, K. E., L. SIMPSON, J. CARTER, D. HASSENBEIN, and G. D. LEIKAUF. 1993. Ozone inhalation stimulates expression of a neutrophil chemotactic protein, macrophage inflammatory protein 2. Toxicol. Appl. Pharmacol. 119:306-309.

    Google Scholar 

  27. FARONE, A. L., C. W. FREVERT, M. B. FARONE, M. J. MORIN, B. N. FIELD, J. D. PAULAUSKIS, and L. KOBZIK. 1997. Serotype-dependent induction of Pulmonary neutrophilia and inflammatory cytokine gene expression by reovirus. J. Virol. 70:7079-7084.

    Google Scholar 

  28. NEMERY, B. 1990. Metal toxicity and the respiratory tract. Eur. Respir. J. 3:202-219.

    Google Scholar 

  29. ELSBACH, P. and J. WEISS. 1983. A reevaluation of the roles of O ?2 dependent and O ?2 independent microbicidal systems of phagocytes. Rev. Infect. Dis. 5:843-853.

    Google Scholar 

  30. ROSSI, F. 1986. The O ?2 -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function. Biochim. et. Biophy. Acta 853:65-89.

    Google Scholar 

  31. SHI, M. M., J. J. GODLESKI, and J. D. PAULAUSKIS. 1995. Molecular cloning and posttranscriptional regulation of macrophage inflammatory protein-1? in alveolar macrophages. Biochem. Biophys. Res. Commun. 211:289-295.

    Google Scholar 

  32. SHI, M. M., I. W. CHONG, J. J. GODLESKI, and J. D. PAULAUSKIS. 1999. Regulation of macrophage inflammatory protein-2 gene expression by oxidative stress in rat alveolar macrophages. Immunol. 97:309-315.

    Google Scholar 

  33. CHEN, F. Y., F. M. AMORA, and J. A. WRIGHT. 1993. Mammalian ribonucleotide reductase R1 mRNA stability under normal and phorbol ester stimulating conditions: involvement of a cis-trans interaction at the 3' untranslated region. EMBO J. 12:3977-3986.

    Google Scholar 

  34. BREWER, G. 1991. An A+U-rich element RNA-binding factor regulates c-myc mRNA stability in vitro. Mol. Cell Biol. 11:2460-2466.

    Google Scholar 

  35. MALTER, J. S. 1989. Identification of an AUUUA-specific messenger RNA binding protein. Science 246:664-666.

    Google Scholar 

  36. SHAW, G. and R. KAMEN. 1986. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659-667.

    Google Scholar 

  37. MALTER, J. S. and Y. HONG. 1991. A redox switch and phosphorylation are involved in the post-translational up-regulation of the adenosine-uridine binding factor by phorbol ester and ionophore. J. Biol. Chem. 266:3167-3171.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chong, IW., Lin, SR., Hwang, JJ. et al. Expression and Regulation of Macrophage Inflammatory Protein-2 Gene by Vanadium in Mouse Macrophages. Inflammation 24, 127–139 (2000). https://doi.org/10.1023/A:1007098508014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007098508014

Keywords

Navigation